SETS OF REAL NUMBERS

OBJECTIVES: 1) Classify real numbers

2) Use interval notation

REAL NUMBERS:

Any number that can be expressed in decimal form; any number found on the number line.

DEFINITIONS

Imaginary Numbers: A non-real number $\exists i$ Counting/Natural Numbers: Counting numbers without $0 \quad \{1, 2, 3, ...\}$ Wholes Numbers: Counting numbers with $0 \quad \{0, 1, 2, 3, ...\}$ Integers: Whole numbers AND negative numbers $\{2, ..., 3, -2, -1, 0, 1, 2, 3, ...\}$ Rational Numbers: Any number that can be expressed as a ratio of two integers $e^{x_i} = 0, 1.53, -17$ Irrational Numbers: Non-repeating and non-terminating decimals $\sqrt{2}, \sqrt{3}, \sqrt{5}$ Transcendental Numbers: An irrational number represented with a symbol π , e

Examples: Name the sets of numbers each number belongs to:

1) $-\frac{2}{3}$ R, Q 2) $\sqrt{121}$ R, Q, Z, W, N 3) 9.9 R, Q 4) $\sqrt{6}$ R, wrational 5) -22.79 R, Q 6) $\sqrt{-4}$ I (maginary)

1.1 Notes **INTERVAL NOTATION:** A method used to define a set of numbers. Usually, this is used to describe a certain span or group of spans of numbers along an axis, such as an x-axis. However, this notation can be used to describe any group of numbers.

For example, consider the set of numbers shown on each number line below:

UNBOUNDED INTERVAL:

Graph the following on a number line and write in inequality notation.

5