LIMITS INVOLVING INFINITY

OBJECTIVES: 1) Find limits at a vertical asymptote.
2) Use two different techniques for evaluating limits at infinity.

FINDING LIMITS AT A VERTICAL ASYMPTOTE:

1) $\lim _{x \rightarrow-3} \frac{-2}{x+3}$

$$
\lim _{x \rightarrow-3^{-}} \frac{-2}{x+3}=\frac{-2}{-0}=+\infty
$$

$$
\lim _{x \rightarrow-3^{+}} \frac{-2}{x+3}=\frac{-2}{+0}=-\infty
$$

$$
\lim _{x \rightarrow-3} \frac{-2}{x+3}=\text { ONE }
$$

2) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{1}{0^{+}}=+\infty \\
& \lim _{x \rightarrow 0^{+}} \frac{1}{0^{+}}=+\infty
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=D N E,+\infty
$$

LIMITS AT INFINITY: If k is a positive rational number and c is any real number, then

$$
\lim _{x \rightarrow \infty} \frac{c}{x^{k}}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{c}{x^{k}}=0
$$

(provided that x^{k} is always defined).

END BEHAVIOR LIMITS: TWO TECHNIQUES

End behavior describes how the function "acts" as $x \rightarrow \pm \infty$.

1) $\lim _{x \rightarrow \infty}\left(x^{3}-3 x^{2}+7 x+2\right)$
2) $\lim _{x \rightarrow-\infty}\left(x^{3}-3 x^{2}+7 x+2\right)$
3) $\lim _{x \rightarrow \infty}\left(-7 x^{4}+2 x^{2}+x-5\right)$
$\lim _{x \rightarrow \infty} x^{3}\left(1-\frac{3}{x}+\frac{7}{x^{2}}+\frac{2}{x^{3}}\right)=$
$\lim _{x \rightarrow-\infty} f(x)=-\infty$
$\lim _{x \rightarrow \infty} f(x)=-\infty$

FUNCTION HIERARCHY: The progression for determining which functions dominate (take over) is

$$
\frac{1}{x}<\log x<x<x^{2}<x^{3}<\ldots<2^{x}<3^{x}<\ldots<x^{x}
$$

4) $\lim _{x \rightarrow \infty}\left(\frac{x^{3}-1}{2 x^{2}+7 x+500}\right)=\infty$
5) $\lim _{x \rightarrow-\infty}\left(\frac{2 x^{2}-5}{3 x^{2}+x+2}\right)=\frac{2}{3}$
6) $\lim _{x \rightarrow \infty}\left(\frac{x^{3}-6}{2 x^{4}-5 x}\right)=0$
7) $\lim _{x \rightarrow-\infty}\left(\frac{x^{3}-3 x^{2}+7 x+2}{-3 x^{3}-x+2}\right)=-\frac{1}{3}$
8) $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{2}+2}}{4 x+3}=\frac{-3}{4}$
9) $\lim _{x \rightarrow \infty}\left(\frac{2 x^{4}-x^{2}+8 x}{-5 x^{4}+7}\right)=\frac{-2}{5}$
