OBJECTIVES:

1) Use the distance formula to determine if a set of coordinates form a right triangle.
2) Use the midpoint formula to find the center of a circle.

DISTANCE: For $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, the distance between A and B is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$$
\begin{aligned}
& d^{2}=\left|x_{2}-x_{1}\right|^{2}+\left|\left|y_{2}-y_{1}\right|^{2}\right. \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

1. Given $B(1,4), I(6,-4)$, $G(-16,-6)$. Is \triangle BIG a right triangle?

$$
\begin{aligned}
& B 1=\sqrt{5^{2}+8^{2}}=\sqrt{25}+64=\sqrt{89} \\
& 19=\sqrt{22^{2}+2^{2}}=\sqrt{488} \\
& B 9=\sqrt{17^{2}+10^{2}}=\sqrt{389} \\
& (B 1)^{2}+(B 9)^{2}=(19)^{2} \\
& 89+389 \neq 488
\end{aligned}
$$

No, $\triangle B I G$ is not art \triangle.
(It's obtuse)
2. The center of a circle is at $(-3,2)$ and a point on the circle is $(5,4)$. Find the radius of the circle.

$$
\begin{aligned}
& d=\sqrt{8^{2}+2^{2}} \\
& d=\sqrt{68} \\
& d=2 \sqrt{17} \\
& r=2 \sqrt{17}
\end{aligned}
$$

4. Find the coordinates of all points in the isosceles trapezoid.
5. Use the distance formula to prove that diagonals are congruent. $-\operatorname{leg} s \cong$ base $4 s \cong$, bases $11 \therefore D^{\prime} s \cong$ AIs
4) $A(g-e, f) C(0,0)$
5)

$$
\begin{aligned}
R B= & \sqrt{(g-e)^{2}+(f-0)^{2}}=\sqrt{(g-e)^{2}+f^{2}} \\
A C= & \sqrt{(g-e-0)^{2}+(f-0)^{2}}=\sqrt{(g-e)^{2}+f^{2}} \\
& \overline{R B} \cong \overline{A C}
\end{aligned}
$$

6. Find the coordinates of all points in the square.

- Diag \cong bisect each other

7. Find the coordinates of all points in the rectangle.

- opp sides II s §
- shaded Δs are \cong by $A A S$ (see markings)

