RECTANGULAR COORDINATES

3. Find the midpoint of $G\left(\frac{3\pi}{2}, \frac{3}{5}\right)$ and $M\left(\frac{3\pi}{4}, \frac{7}{10}\right)$. If G and M are endpoints of the diameter of a circle, find the center and radius.

find the center and radius.
Midpt:
$$\begin{pmatrix} x_1 + x_2 \\ 2 \end{pmatrix}$$
, $\frac{y_1 + y_2}{2}$
 $\begin{pmatrix} \frac{3}{7}\pi + \frac{3}{7}\pi \\ 2 \end{pmatrix}$, $\frac{3}{2} + \frac{7}{10}$
 $\frac{3\pi}{2} + \frac{3\pi}{2}$, $\frac{3}{2} + \frac{7}{10}$
 $\frac{3\pi}{2} + \frac{3\pi}{2}$, $\frac{3}{2} + \frac{7}{10}$
 $\frac{7\pi}{2}$, $\frac{13}{2}$
midpt: $\begin{pmatrix} 9\pi & 13 \\ 8 & 20 \end{pmatrix}$ point "c"
center: $\begin{pmatrix} 9\pi & 13 \\ 8 & 20 \end{pmatrix}$ point "c"

1.4 Notes

- 4. Find the coordinates of all points in the isosceles trapezoid.
- 5. Use the distance formula to prove that diagonals are congruent -legs \cong , base 4s \cong , bases 11 :. Δ 's \cong AAS

4)
$$A(q-e,f) \quad C(0,0)$$

5) $RB= \sqrt{(q-e)^2 + (f-0)^2} = \sqrt{(q-e)^2 + f^2}$
 $AC = \sqrt{(q-e-0)^2 + (f-0)^2} = \sqrt{(q-e)^2 + f^2}$
 $\overline{PB} \cong \overline{AC}$

$$\mathbf{H} = \left\{ \begin{array}{c} \mathbf{R} \left(\mathbf{e}, \mathbf{f} \right) \\ \mathbf{R} \left(\mathbf{g}, \mathbf{e} \right) \\ \mathbf{R} \left(\mathbf{g}, \mathbf{0} \right) \\ \mathbf{R} \left(\mathbf{g},$$

6. Find the coordinates of all points in the square.

- Diag = ; bisect each other

7. Find the coordinates of all points in the rectangle.

- opp side: II
$$\leq \cong$$

- shaded Δs are \cong by AAS (see markings)
prover $\leq AB$ II FC, $\langle ABF \equiv \& CFB \ (alt.int \& s) \rangle$
AAS $\langle AB \cong FC, \ (Def. rect) \rangle$
 $\langle L \ lines intersect to form rt $\langle s, :: rt \Delta s \rangle$
 $\langle A \rangle$ (e, htd) $\langle h \rangle$ (o, h)
 $\langle A \rangle$ (e, htd) $\langle h \rangle$
 $\langle e \rangle$ (e, o)
 $\langle e \rangle$ (e, o)$