1) Determine if a function is continuous at some value of x.
2) Use the Intermediate Value Theorem to prove the existence of a zero of a function.

In this section we use limits to define continuous functions and examine their behavior. First, here's a look at functions that are NOT continuous at some value c.

$\lim _{x \rightarrow c} f(x) \neq f(c)$

$\lim _{x \rightarrow c} f(x) \rightarrow$ D.N.E
$\lim _{x \rightarrow c} f(x) \rightarrow$ D.N.E

DEFINITION: A function $f(x)$ is continuous at $x=c$ if and only if $\lim _{x \rightarrow c} f(x)=f(c)$.

Is $f(x)$ continuous at c ? You must show these steps when asked to justify/prove/show continuity at a point!

$$
x=1 \quad x=2 \quad x=3
$$

1) Evaluate $f(c) \quad f(1)=1 \quad f(2)=2 \quad f(3)=2$
2) Evaluate $\lim _{x \rightarrow c} f(x) \quad \lim _{x \rightarrow 1} f(x)=$ ONE $\quad \lim _{x \rightarrow 2} f(x)=1 \quad \lim _{x \rightarrow 3} f(x)$
3) Determine if $\lim _{x \rightarrow c} f(x)=f(c)$.

\checkmark Does step 1 equal step 2?
\checkmark If yes, then $f(x)$ is continuous at $x=c$.

FACT: 1) Polynomial functions are continuous at every real number c.
2) Rational functions are continuous at every real number in their domain.
*Note: Trigonometric, logarithmic, and exponential functions are also continuous at every real number in their domain.

Let a function $f(x)$ be defined on a closed interval $[a, b]$. We say that $f(x)$ is "continuous on $[a, b]$ " if it is continuous on (a, b), and if, in addition, $\lim _{x \rightarrow n^{+}} f(x)=f(a)$ and $\lim _{x \rightarrow h^{-}} f(x)=f(b)$.

Ex 1) Show that f is continuous at c.
Ex 2) Find the values for which the function is continuous.

$$
\begin{array}{lll}
f(x)=\frac{\sqrt[3]{x}}{2 x+1} \quad c=8 & \text { a) } g(x)=\frac{x^{2}-9}{2 x+1} & \text { b) } h(x)=\sqrt{16-x^{2}} \\
f(8)=\frac{\sqrt[3]{8}}{2(8)+1}=\frac{2}{17} \lim _{x \rightarrow 8} \frac{3 \sqrt{x}}{2 x+1}=\frac{2}{17} & \left(-\infty,-\frac{1}{2}\right) \cup\left(-\frac{1}{2}, \infty\right) & 16-x^{2} \geq 0 \\
f(8)=\lim _{x \rightarrow 8} f(x) \quad \therefore \text { f is continuous } C x=8 . & {[-4,4]}
\end{array}
$$

Now let's return to our graphs to discuss graphs of functions with discontinuities a bit more.

3) Name the type of discontinuity at each value of x on the graph of this piecewise function.
a) $x=-2$
Removable
b) $x=-1$
Discontinuity
Jump
$f(-2)=3 \quad \lim _{x \rightarrow-2} f(x)=1$
c) $x=1 \quad$ Infinite
d) $x=2$

Removable

4) Determine where the function, $g(x)=\frac{x-5}{x^{2}-2 x-15}$, is not continuous and specify the type of discontinuity.
$g(x)$ is discontinuas when the denominator is zero. $0=x^{2}-2 x-15$
It is discontinuous at $x=5 \leqslant x=-3$.

$$
0=(x-5)(x+3)
$$

There is a hole at $x=5$, so there is a
removable disc. At $x=-3$, then is a vertical asymptote. At $x=-3 \rightarrow$ infinite disc.
5) Determine the value of "a" that would make the function continuous.
a) $f(x)=\left\{\begin{array}{l}\frac{\sin x}{x} \\ a, x=0\end{array} \quad, x \neq 0\right.$
b) $h(x)= \begin{cases}a x+1, & x \leq 3 \\ a x^{2}-1, & x>3\end{cases}$
$\frac{\sin x}{x}$ is discontinues when
$x=0$, : to make $f(x)$ continuous
at $x=0$, we reed to define a, to be $a=0$. Now $f(0)=0$ and

$$
\begin{aligned}
a x+1 & =a x^{2}-1 \\
3 a+1 & =9 a-1 \\
6 a & =2 \\
a & =\frac{1}{3}
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} f(x)=0
$$

INTERMEDIATE VALUE THEOREM: If $f(x)$ is

continuous on the closed interval $[a, b]$ and d is a number such that $f(a)<d<f(b)$, then there exists at least one number x, such that $a<x<b$, such that $f(x)=d$.

SIMPLY PUT: If $f(x)$ is continuous from a to b, then it takes on every value between $f(a)$ and $f(b)$.
6) Show that for $g(x)=x^{3}-5 x^{2}+8 x-9$ there is some $x, 0<x<5$, such that $g(x)=27$.

Since $g(x)$ is a polynomial, it's continuous for all reals. Since
$g(0)=-9$
$g(5)=31$
$g(0)<27<g(5)$, then by the Intermediate value the orem,
there exists an x, where $0<x<5$, such that $g(x)=27$.

IMPORTANT RESULT: If $f(x)$ is continuous on $[\mathrm{a}, \mathrm{b}]$, and if $f(a)$ and $f(b)$ have opposite signs, then there is at least one solution of the equation $f(x)=0$ in the interval (a, b).

7) Prove that the equation $f(x)=x^{3}-5 x^{2}+8 x-9$ has at least one solution between 3 and 4 .

$$
\begin{aligned}
& f(3)=-3 \quad \text { The polynomial } f(x) \text { is continuous for all reals. } \\
& f(4)=7 \quad \text { Since } f(3)<0<f(4) \text {, then by the } \\
& \\
& \\
& \\
& \\
& \text { Intermediate Valve Theorem, there is an } x \text {, such } \\
& \text { that } 3<x<4 \text {, such that } f(x)=0 .
\end{aligned}
$$

