15 CONTINUOUS FUNCTIONS

Notes

OBJECTIVES: 1) Determine if a function is continuous at some value of x.
2) Use the Intermediate Value Theorem to prove the existence of a zero of a function.

In this section we use limits to define continuous functions and examine their behavior. First, here’s a look at
functions that are NOT continuous at some value c.
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DEFINITION: A function f(x) is continuous at X = ¢ if and only if [l_rflf(x) = f(c)

Is f(x) continuous at ¢? You must show these steps when asked to justify/prove/show continuity at a point!
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3) Determine if lim f(x) = f(c).
v Does step 1 equal step 2?
v’ If yes, then f(x) is continuous at x =c.
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ACT: 1) Polynomial functions are continuous at every real number c.
2) Rational functions are continuous at every real number in their domain.
*Note: Trigonometric, logarithmic, and exponential functions are
also continuous at every real number in their domain.

Let a function f(x) be defined on a closed interval [a.b]. We say that f(x ) is “continuous on

[a.b]” if it is continuous on (a,b), and if, in addition, lim f(x)=f(a) and lllTl f(x)=f(b).

Ex 1) Show that f is continuous at c. Ex 2) Find the values for which the function is continuous.
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Now let’s return to our graphs to discuss graphs of functions with discontinuities a bit more.
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3) Name the type of discontinuity at each value of x y
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4) Determine where the function, g(x) = , is not continuous and specify the type of discontinuity.
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5) Determine the value of “a” that would make the function continuous.
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leTERMEDlATE VALUE THEOREM: 1If f(x) is f(b) :
continuous on the closed interval [a.b] and d is a number d ;
such that f(a) < d < f(b) , then there exists at least one E
number x, such that @ < x < b, such that f(x)=d. f(a) ! ;
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SIMPLY PUT: If f(x) is continuous from a to b, then it takes on every value between f(a) and f(b).

6) Show that for g(x) = x> —5x* +8x —9 there is some x, 0 < x <5, such that g(x) = 27. 9(0) < —a
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IMPORTANT RESULT: If f(x) is continuous on [a, b], and if f(a) and f(b) have opposite signs, then
there is at least one solution of the equation f(x) = O in the interval (a, b).
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7) Prove that the equation f(x) = x> —5x + 8x — 9 has at least one solution between 3 and 4.
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