STANDARD VIEWING WINDOW:

$\left[x_{\operatorname{mn}}, x_{\max }, x_{s c}\right]$ by $\left[y_{\min }, y_{\max }, y_{x c}\right]$
$[-10,10,1]$ by $[-10,10,1]$

INTERCEPTS: EXACT (ALGEBRAIC) AND APPROXIMATE (CALCULATOR)

y-intercept (0,\#)
Initial Value

1. Plot the function $y=3 x^{3}-2 x^{2}$ in the given windows:
a. standard. How many roots? ? Hard to tell!
b. $[-1,1, .1]$ by $[-1,1,1]$. How many roots? $3 \rightarrow$ verify algebralcally:

$$
y=x^{2}(3 x-2) \quad \text { or } x \cdot x(3 x-2)=0
$$

$$
x^{x^{2}=0} \quad 3 x-2=0 \quad x=0 \quad x=0 \quad 3 x-2=0
$$

Double

$$
\text { roots: } 0,0,2 / 3
$$

'2. Find approximate and exact roots for $y=-2 x^{3}+4 x^{2}+4 x$.

3. Estimate (from graph) and find intercepts for $x y-x^{2} y+x^{3}=4$.

Solve for y to graph: From graph:

$$
\begin{gathered}
x y-x^{2} y=-x^{3}+4 \\
x y(1-x)=-x^{3}+4 \\
y=\frac{-x^{3}+4}{x(1-x)}
\end{gathered}
$$

by intercept? check algebraically
Algebraically:
Find y int: let $x=0 \quad$ Find x int: let $y=0$, solve for x

$$
\begin{array}{ll}
y=\frac{-0^{3}+4}{0(1-0)} & 0=\frac{-x^{3}+4}{x(1-x)} \Rightarrow 0 \\
y=\frac{4}{0} \text { undefined! } & \therefore \text { yint doesny exist, } \\
& x^{3}=4 \\
& x=\sqrt[3]{4}
\end{array}
$$

graph never crosses y-axis
4. Use the graph to estimate each:
a. $\sqrt[3]{2} \approx 1.259$
b. $\sqrt[3]{3} \approx 1.442$
c. $\sqrt[3]{6} \simeq 1.817$

(everthough it's not on the graph we know $\sqrt[3]{2}$: $\sqrt[3]{3}$!

$$
\begin{aligned}
& \sqrt[3]{2} \cdot \sqrt[3]{3}=\sqrt[3]{6} \\
& (-1.259)(\approx 1.442)=1.81
\end{aligned}
$$

