OBJECTIVES: 1) Solve a right triangle using trig (in the context of a word problem).
2) Find the area of a triangle and other regular shapes.

SOLVE A RIGHT TRIANGLE

Solve the right triangle. (Find the missing side lengths or angles.)

$$
\sin 60^{\circ}=\frac{y}{20} \quad \cos 60^{\circ}=\frac{x}{20}
$$

$$
20 \sin 60^{\circ}=y \quad 20 \cos 60^{\circ}=x
$$

$$
\begin{aligned}
& 20 \frac{\sqrt{3}}{2}=y \\
& 10 \sqrt{3}=y
\end{aligned}
$$

$$
20 \cdot \frac{1}{2}=x
$$

$$
10=x
$$

RIGHT TRIANGLE APPLICATIONS

2)

$$
\sin \theta=\frac{7}{25} \text { or } \cos \theta=\frac{24}{25} \text { or } \tan \theta=\frac{7}{24}
$$

Any trig function is fine!

$$
\theta=\tan ^{-1}\left(\frac{7}{24}\right)
$$

$$
\beta=90^{\circ}-\tan ^{-1}\left(\frac{7}{24}\right)
$$

(of)

$$
\beta=\tan ^{-1}\left(\frac{24}{7}\right)
$$

3) A ladder leaning against a wall. The base of the ladder is 1.7 meters from the base of the building and the ladder makes an angle of 74° with the ground. How far from the ground is the top of the ladder?

4) From the top of a lighthouse 210 feet high, the angle of depression of a boat is 27°. Find the distance from the boat to the foot of the lighthouse. Assume that the lighthouse was built at sea level.

$$
\begin{aligned}
& \tan 63^{\circ}=\frac{x}{210} \\
& 210 \tan 63^{\circ}=x
\end{aligned}
$$

FORMULA FOR THE AREA OF A TRIANGLE

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2} b \cdot a \sin \theta
\end{aligned}
$$

If a and b are lengths of two sides of a triangle and θ is the angle included between those sides, then the area of the triangle is given by:

$$
A=\frac{1}{2} a b \sin \theta
$$

5) Find the area of the triangle:

$$
\begin{aligned}
A & =\frac{1}{2}(3)(12) \sin 60^{\circ} \\
A & =18 \sin 60^{\circ} \\
& =\frac{18 \sqrt{3}}{2} \\
& =9 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

6) Find the area of the regular hexagon.

$$
\begin{aligned}
\theta & =60^{\circ} \Rightarrow \frac{360^{\circ}}{6}=60^{\circ} \\
A_{\Delta} & =\frac{1}{2}(20)(20) \sin 60^{\circ} \\
& =\frac{1}{2}(400) \frac{\sqrt{3}}{2} \\
& =200 \frac{\sqrt{3}}{2} \\
& =100 \sqrt{3} u^{2}
\end{aligned}
$$

