OBJECTIVES: 1) Solve a right triangle application problem.
2) Express lengths and areas using trigonometric functions.

RIGHT TRIANGLE APPLICATIONS

1) The angle of elevation to the top of a building at point A is 50°. At point B which is 100 ft further away from the building than point A, the angle of elevation to the top of the building is 42°. Find the height of the building in feet.

2) Find a, b, c, and d in terms of θ.

$$
\begin{gathered}
\tan 50^{\circ}=\frac{x}{c} \quad x=c \tan 50^{\circ} \\
\tan 42^{\circ}=\frac{x}{c+100} \quad\left\{\begin{array}{l}
\text { so: } \\
x=\frac{100+\tan 42^{\circ}}{\tan 50^{\circ}-\tan 42^{\circ}} \\
x=\tan 42^{\circ}(c+100) \\
c \tan 50^{\circ}
\end{array}=c \tan 42^{\circ}+100 \tan 42^{\circ}\right. \\
c \tan 50^{\circ}-c \tan 42^{\circ}=100 \tan 42^{\circ} \\
c\left(\tan 50^{\circ}-\tan 42^{\circ}\right)=100+\tan 42^{\circ} \\
c=\frac{100+\tan 42^{\circ}}{\tan 50^{\circ}-\tan 42^{\circ}}
\end{gathered}
$$

$$
\begin{aligned}
& a=\sin \theta \\
& d=\cos \theta
\end{aligned}
$$

$$
\tan \theta=\frac{b}{1}
$$

$$
b=\tan \theta
$$

$$
\cos \theta=\frac{1}{c}
$$

$$
c=\frac{1}{\cos \theta}=\sec \theta
$$

3) In the figure below, $A B$ is 24 in . Express x as a function of θ.

$$
\begin{aligned}
& \sin \theta=\frac{10}{a} \quad a=\frac{10}{\sin \theta} \\
& \cos \theta=\frac{x}{b} \\
& b=\frac{x}{\cos \theta} \\
& a+b=24 \\
& \frac{10}{\sin \theta}+\frac{x}{\cos \theta}=24 \\
& x=\left(24-\frac{10}{\sin \theta}\right) \cos \theta \\
& x=24 \cos \theta-10 \cot \theta
\end{aligned}
$$

