OBJECTIVES: 1) Use the law of sines and law of cosines in application problems.
2) Determine if there are one, two, or no triangles to a given problem.

THE AMBIGUOUS CASE: SSA

If you are given two angles and one side (ASA or AAS) the Law of Sines will provide you with ONE solution for a missing side. However, the Law of Sines has a problem dealing with SSA!

The Law of Sines could provide you with no solution, one solution, or possibly two!

RECALL:

The sine function has a range of $[-1,1]$.
The $\sin ^{-1}$ function has a domain of $[-1,1]$ and range of $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
If $\sin \theta$ is positive, θ can lie in the first or second quadrant.

1) In $\triangle A B C, a=20, c=16, \angle A=30^{\circ}$. Solve the triangle. ONE TRIANGLE !

$$
\begin{array}{ll}
\frac{\sin 30^{\circ}}{20}=\frac{\sin C}{16} & \sin C=\frac{16 \cdot \frac{1}{2}}{20} \\
\frac{16 \sin 30^{\circ}}{20}=\sin C & \sin C=\frac{8}{20}=\frac{2}{5}
\end{array}
$$

$$
c=\sin ^{-1}\left(\frac{2}{5}\right)
$$

 $C \approx 23.58^{\circ}$ OR 156.42°
2) In $\triangle A B C, a=7, c=16, \angle A=30^{\circ}$. Solve the triangle.

$$
\frac{\sin 30^{\circ}}{7}=\frac{\sin c}{16}
$$

$\sin C=\frac{16 \sin 30^{\circ}}{7}$

THE AMBIGUOUS CASE!

3) In $\triangle A B C, a=10, b=16$, and $\angle A=30^{\circ} \mathrm{ft}$. Solve the triangle.

$$
\begin{aligned}
& \frac{\sin 30^{\circ}}{10}=\frac{\sin B}{16} \\
& \sin B=\frac{16 \sin 30^{\circ}}{10}
\end{aligned}
$$

$$
\frac{c}{\sin C}=\frac{10}{\sin 30^{\circ}}
$$

BOTH

$$
B=\sin ^{-1}(.8)
$$

$$
\begin{array}{ll}
c=\frac{10 \sin C}{\sin 30^{\circ}} & \frac{c}{\sin C}=\frac{10}{\sin 30^{\circ}} \\
c=10 \sin 23.3 & c=\frac{10 \sin C}{\sin 30^{\circ}}
\end{array}
$$

$$
\begin{aligned}
& B \approx 53.13 \\
& \frac{0 R}{3} \\
& B \approx 126.87
\end{aligned}
$$

4) Solve the triangle.

Use LOC. to find $4 C$

use L.O.S. to find other 4 s

$$
\frac{\sin 120^{\circ}}{7}=\frac{\sin A}{3} \quad \sin A=\frac{3 \sin 120^{\circ}}{7} \quad A=\sin ^{-1}\left(\frac{3 \sqrt{3}}{14}\right)
$$

$$
A \approx 21.79^{\circ}
$$

APPLICATIONS OF LAW OF SINES/COSINES

5) You are an avid bird watcher! You spot the highly coveted yellow-headed blackbird in a tree north of where you are standing. You also have an excellent eye for angles, and you know from your current spot, the bird's nest is at an angle of elevation of 34°. You walk 20 feet closer to the bird's nest, to get a better look. Now, the angle of elevation is 43°. How far are you from the bird? How high is the bird's nest?

6) Find the perimeter and area of a regular pentagon inscribed in a circle of radius 7 (exact and approximate).

7) Find the area of a triangle with side lengths 3,6 , and 7 .

$$
\begin{array}{ll}
7^{2}=3^{2}+6^{2}-2(3)(6) \cos \theta \\
\frac{49-9-36}{-36}=\cos \theta & A_{\Delta}=\frac{1}{2} a b \sin \theta \\
-\frac{1}{9}=\cos \theta & A_{\Delta}=\frac{1}{2}(3.6) \sin \theta \\
\cos ^{-1}\left(-\frac{1}{9}\right)=\theta & A_{\Delta}=8.94 \\
\theta=96.38^{\circ} & \\
\text { C STD } \theta! &
\end{array}
$$

