VECTORS: A GEOMETRIC APPROACH

OBJECTIVES: 1) Draw a vector in the coordinate plane and compute its magnitude (two different ways).
2) Determine the resultant of two forces.
3) Find the horizontal and vertical components of a vector.

VECTOR BASICS

Many physical quantities such as length, area, volume, or speed can be completely specified by a single real number, which we call scalar quantities. Other quantities, such as velocities and forces require for their complete specification both a magnitude and a direction, which we call vector quantities.

Same magnitude and direction: $\mathbf{a}=\mathbf{b}$

Same magnitude, directions are not the same: $\mathbf{a} \neq \mathbf{b}$

Same direction, magnitudes are not the same: $\mathbf{a} \neq \mathbf{d}$

Neither magnitude nor direction are the same: $\mathbf{a} \neq \mathbf{e}$

VECTOR ADDITION

Two different approaches:
Given the following points, draw the vector $\overrightarrow{P Q}+\overrightarrow{R S}$ and compute its magnitude.

$$
P(1,2) \quad Q(2,7) \quad R(5,5) \quad S(10,3)
$$

PARALLELOGRAM RULE

$$
\overrightarrow{P T} \quad P(1,2) \quad T(7,5)
$$

$$
|\overrightarrow{P T}|=|\overrightarrow{P Q}+\overrightarrow{R S}|=3 \sqrt{5}
$$

THE RESULTANT OF TWO PERPENDICULAR FORCES

Two forces \mathbf{F} and \mathbf{G} act on an object. \mathbf{G} acts horizontally to the right with a magnitude of 12 N (newtons, $1 \mathrm{~N} \approx 0.2248 \mathrm{lb}$.). F acts vertically upward with a magnitude of 16 N . Determine the magnitude and direction of the resultant force.

$$
\begin{aligned}
|F+G| & =\sqrt{12^{2}+16^{2}}=\sqrt{400}=20 \mathrm{~N} \\
\tan \theta & =\frac{16}{12} \\
\theta & =\tan ^{-1}\left(\frac{16}{12}\right) \quad \theta \approx 53.1^{\circ}
\end{aligned}
$$

THE RESULTANT OF TWO FORCES

Force \mathbf{F} acts on an object horizontally to the right with a magnitude of 15 N . Force \mathbf{G} acts on the object as indicated in the diagram with a magnitude of 5 N . Determine the resultant of the two forces.

$$
|F+G|=\sqrt{5^{2}+15^{2}-2(5)(15) \cos 140^{\circ}}
$$

$$
\underbrace{|F+G| \approx 19.1 \mathrm{~N}}_{\text {STORE THIS! }}
$$

$$
\begin{aligned}
\frac{\sin \theta}{5 N} & =\frac{\sin 140^{\circ}}{19.1 N} \text { STORE! } \\
\sin \theta & =\frac{5 \sin 140^{\circ}}{19.1} \\
\theta & =\sin ^{-1}\left(\frac{5 \sin 140^{\circ}}{19.1}\right) \\
\theta & \approx 9.7^{\circ}
\end{aligned}
$$

FINDING HORIZONTAL AND VERTICAL COMPONENTS

Determine the horizontal and vertical components of the velocity vector in the figure below.

$$
\begin{array}{ll}
\sin 30^{\circ}=\frac{V_{y}}{70} & \cos 30^{\circ}=\frac{V_{x}}{70} \\
V_{y}=70 \sin 30^{\circ} & V_{x}=70 \cos 30^{\circ} \\
V_{y}=35 \mathrm{~cm} / \mathrm{sec} & V_{x}=70 \cdot \frac{\sqrt{3}}{2} \\
& V_{x}=35 \sqrt{3} \mathrm{~cm} / \mathrm{sec}
\end{array}
$$

