VECTORS: A GEOMETRIC APPROACH

- **OBJECTIVES**: 1) Draw a vector in the coordinate plane and compute its magnitude (two different ways). 2) Determine the resultant of two forces.
 - 3) Find the horizontal and vertical components of a vector.

VECTOR BASICS

Many physical quantities such as length, area, volume, or speed can be completely specified by a single real number, which we call **scalar quantities**. Other quantities, such as velocities and forces require for their complete specification both a magnitude and a direction, which we call **vector quantities**.

Same magnitude and direction: **a=b**

Same magnitude, directions are not the same: $\mathbf{a} \neq \mathbf{b}$

magnitudes are not

the same: $\mathbf{a} \neq \mathbf{d}$

a e

Neither magnitude nor direction are the same: $\mathbf{a} \neq \mathbf{e}$

VECTOR ADDITION

Two different approaches:

Given the following points, draw the vector $\overrightarrow{PQ} + \overrightarrow{RS}$ and compute its magnitude. $P(1,2) \quad Q(2,7) \quad R(5,5) \quad S(10,3)$

 \overrightarrow{PS} P(1,2) S(7,5)

PARALLELOGRAM RULE

(PT = | PQ + RS = 315

10.3 Notes

THE RESULTANT OF TWO PERPENDICULAR FORCES

Two forces **F** and **G** act on an object. **G** acts horizontally to the right with a magnitude of 12 N (newtons, $1N \approx 0.2248$ lb.). **F** acts vertically upward with a magnitude of 16 N. Determine the magnitude and direction of the resultant force.

THE RESULTANT OF TWO FORCES

Force **F** acts on an object horizontally to the right with a magnitude of 15 N. Force **G** acts on the object as indicated in the diagram with a magnitude of 5N. Determine the resultant of the two forces.

Determine the horizontal and vertical components of the velocity vector in the figure below.

