OBJECTIVES: 1) Draw a vector in standard position and calculate the magnitude (or norm) of the vector.
2) Perform operations on vectors and find a unit vector.
3) Use vectors in navigation applications.

STANDARD POSITION

The position vector or the standard vector starts at the origin and uses <\#,\#> notation.

a is the horizontal component of $\overrightarrow{O P}$ b is the vertical component of $\overrightarrow{O P}$

$$
\begin{aligned}
& |\overrightarrow{O P}|^{2}=a^{2}+b^{2} \\
& |\overrightarrow{O P}|=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

LENGTH OF A VECTOR

 If $\boldsymbol{v}=\left\langle\nu_{1}, \nu_{2}\right\rangle$, then$$
|\boldsymbol{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

1) Find the position vector of $\overrightarrow{R S}$ and label it \boldsymbol{v}. Then find the length of \boldsymbol{v}.

$$
\begin{aligned}
& R(3,2) S(6,8) \quad \overrightarrow{R S}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle \\
& \overrightarrow{R S}=\langle 6-3,8-2\rangle \\
& \overrightarrow{R S}=\langle 3,6\rangle=V \\
&|V|=|\overrightarrow{R S}|=\sqrt{3^{2}+6^{2}}=\sqrt{45}=3 \sqrt{5}
\end{aligned}
$$

VECTOR ADDITION:

$$
\text { If } \boldsymbol{\mu}=\left\langle u_{1}, u_{2}\right\rangle \text { and } \boldsymbol{v}=\left\langle v_{1}, v_{2}\right\rangle \text {, then } \boldsymbol{u}+\boldsymbol{v}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}\right\rangle
$$

2) If $\boldsymbol{w}=\langle-2,3\rangle$ and $\mathbf{m}=\langle 5,12\rangle$, find $2 \mathbf{w}-3 \boldsymbol{m}$ in both forms. Then find $|2 \boldsymbol{w}-3 \mathbf{m}|$.

$$
\begin{aligned}
2 w-3 m & =2\langle-2,3\rangle-3\langle 5,12\rangle \\
& =\langle-4,6\rangle+\langle-15,-36\rangle \\
& =\langle-4+-15,6+-36\rangle \\
& =\langle-19,-30\rangle \quad 2 w-3 m=-19 i-30 j \\
|2 w-3 m| & =\sqrt{(-19)^{2}+(-30)^{2}}=
\end{aligned}
$$

$$
\begin{gathered}
\text { UNIT VECTORS } \\
\mathbf{i}=\langle 1,0\rangle \text { and } \mathbf{j}=\langle 0,1\rangle
\end{gathered}
$$

Use \mathbf{i} and \mathbf{j} to represent horizontal and vertical components:

$$
\langle x, y\rangle=x \mathbf{i}+y \mathbf{j}
$$

3) Find a unit vector \mathbf{u} in the same direction as \mathbf{m}.
$m=\langle 5,12\rangle \quad|m|=\sqrt{5^{2}+12^{2}}=13$

$$
\begin{aligned}
u=\frac{1}{|n|} m & =\frac{1}{13}\langle 5,12\rangle \\
& =\left\langle\frac{5}{13,} \frac{12}{13}\right\rangle
\end{aligned}
$$

UNIT VECTOR WITH SAME DIRECTION AS V

If \boldsymbol{v} is a nonzero vector, then

$$
\mathbf{u}=\frac{1}{|\mathbf{v}|} \mathbf{v}
$$

COMPONENTS OF VECTORS

4) If an 18 lb block rests on an inclined plane with a 20° angle of elevation, determine the components of the force perpendicular and parallel to the plane.

5) A force, F_{1}, of 80 pounds acts at an angle of 15° above the horizontal. Pulling in an opposing direction is force F_{2} of 30 pounds acting at an angle of 72° below the horizontal. Find the horizontal and vertical components of the resultant force.

$$
\begin{aligned}
& F_{1 x}=-80 \cos 15^{\circ} i \quad F_{2 x}=30 \cos 72^{\circ} i \\
& F_{1 y}=80 \sin 15^{\circ} j \quad F_{2 y}=-30 \sin 72^{\circ} j \\
& F_{1}+F_{2}=\left(-80 \cos 15^{\circ}+30 \cos 72^{\circ}\right) i+\left(80 \sin 15^{\circ}-30 \sin 72^{\circ}\right) j \\
& F_{1}+F_{2}=-68.0 i+-7.83 \mathrm{j}
\end{aligned}
$$

USING VECTORS IN NAVIGATION

HEADING: Clockwise from due north
AIR SPEED: Plane's speed (speedometer), plane alone
GROUND SPEED: Result of air and wind vectors (direction; also clockwise from N)
COURSE: Result of air and wind vectors (direction; also clockwise from N)
DRIFT ANGLE: Angle from heading to course (not from due N).

A plane has a heading of 36° with an airspeed of $800 \mathrm{~km} / \mathrm{hr}$.

$$
\begin{aligned}
& P_{x}=800 \cos 54^{\circ} i \\
& P_{y}=800 \sin 54^{\circ} j
\end{aligned}
$$

The wind is blowing from 160° at $30 \mathrm{~km} / \mathrm{hr}$.

$$
\begin{aligned}
& W_{x}=-30 \cos 70 i \\
& W_{y}=30 \sin 70_{j}
\end{aligned}
$$

6) A plane has a heading of 40° with an airspeed of $700 \mathrm{~km} / \mathrm{hr}$. The wind is blowing from 300° at $60 \mathrm{~km} / \mathrm{hr}$. Find the groundspeed, course and drift angle.

7) A plane is flying with an airspeed of $600 \mathrm{~km} / \mathrm{hr}$ and heading 100°. The wind is $70 \mathrm{~km} / \mathrm{hr}$ from 40°. Find the ground speed, drift angle and course.

$$
P=600 \cos 10^{\circ} i-600 \sin 10^{\circ} j
$$

$$
w=-70 \cos 50^{\circ} i-70 \sin 50^{\circ} j
$$

$$
P+W=545.9 i-157.8 j
$$

$$
\text { Ground speed }=|p+w|=\sqrt{545.9^{2}+157.8^{2}}=568.2 \mathrm{~km} / \mathrm{hr}
$$

$$
\begin{aligned}
\tan \theta & =\frac{157.8}{545.9} \\
\theta & =16.1^{\circ}
\end{aligned}
$$

Course: $90+16.1^{\circ}=106.1^{\circ}$

$$
\text { Drift } 4=\mid \text { Heading - Course }\left|=|100-106.1|=6.1^{\circ}\right.
$$

