OBJECTIVES: 1) Find the dot product of two vectors.
2) Find the angle between two vectors.

THE DOT PRODUCT (ALGEBRAIC)

Given two vectors $\boldsymbol{u}=\left\langle a_{1}, b_{1}\right\rangle$ and $\boldsymbol{v}=\left\langle a_{2}, b_{2}\right\rangle$, we define the dot product $\boldsymbol{u} \cdot \boldsymbol{v}$ as

$$
\boldsymbol{u} \cdot \boldsymbol{v}=a_{1} \cdot a_{2}+b_{1} \cdot b_{2}
$$

Note: The dot product will yield a scalar (real number), which is why it's also referred to as a scalar product.

1) Find the dot product set, if $\mathbf{s}=\langle-3,4\rangle$ and $\mathbf{t}=\langle 2,-5\rangle$.

$$
\begin{aligned}
s \cdot t & =-3 \cdot 2+4 \cdot-5 \\
& =-6+-20 \\
& =-26
\end{aligned}
$$

2) If $\mathbf{w}=2 \mathbf{i}+2 \mathbf{j}$ and $\mathbf{m}=3 \mathbf{i}-3 \mathbf{j}$, find the dot product.

$$
\begin{aligned}
w \cdot m= & 2(3)+2(-3) \\
= & 6+-6 \\
& 0
\end{aligned}
$$

PROPERTIES OF THE DOT PRODUCT

1) $\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{v} \cdot \boldsymbol{u}$
2) $\boldsymbol{u} \cdot(\boldsymbol{v}+\boldsymbol{w})=\boldsymbol{u} \cdot \boldsymbol{v}+\boldsymbol{u} \cdot \boldsymbol{w}$
3) $\boldsymbol{u} \cdot \boldsymbol{u}=(|\boldsymbol{u}|)^{2}$
4) $a(\boldsymbol{u} \cdot \boldsymbol{v})=a \boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u} \cdot a \boldsymbol{v}$
5) The magnitude of a vector is 7 . What is $\boldsymbol{v} \cdot \boldsymbol{v}$? 4) Suppose $\boldsymbol{v} \cdot \boldsymbol{v}=3$. What is the magnitude of \boldsymbol{v} ?

$$
\begin{aligned}
& |v|=7 \\
& v \cdot v=|v|^{2}=7^{2}=49 \\
& v \cdot v=49
\end{aligned}
$$

$$
v \cdot v=3=|v|^{2}
$$

$$
|v|=\sqrt{3}
$$

THE DOT PRODUCT (GEOMETRIC)

Given two vectors $\boldsymbol{u}=\left\langle a_{1}, b_{1}\right\rangle$ and $\boldsymbol{v}=\left\langle a_{2}, b_{2}\right\rangle$, we define the dot product $\boldsymbol{U} \cdot \boldsymbol{v}$ as

$$
\boldsymbol{u} \cdot \boldsymbol{\nu}=|\boldsymbol{u}| \cdot|\boldsymbol{v}| \cos \theta
$$

Proof: First, suppose that θ is the angle between two non-zero vectors as shown in the diagram below.

$$
\begin{aligned}
& \text { Using the |aw of cosines: } \\
& \begin{aligned}
|a-b|^{2} & =|a|^{2}+|b|^{2}-2|a||b| \cos \theta \\
|a-b|^{2}=(a-b) \cdot(a-b) & =a \cdot a-2 a \cdot b+b \cdot b \\
& =|a|^{2}-2 a \cdot b+|b|^{2} \\
|a|^{2}-2 a \cdot b+|y|^{2} & =|a|^{2}+|y|^{2}-2|a||b| \cos \theta \\
-2 a \cdot b & =-2|a||b| \cos \theta \\
a \cdot b & =|a||b| \cos \theta
\end{aligned}
\end{aligned}
$$

5) Given $|\mathbf{u}|=8$ and $|\boldsymbol{v}|=5$, and the angle between \mathbf{u} and \boldsymbol{v} is $\frac{3 \pi}{4}$, find $\mathbf{u} \cdot \boldsymbol{v}$.

$$
\begin{aligned}
u \cdot v & =|u||v| \cos \left(\frac{3 \pi}{4}\right) \\
& =8.5\left(-\frac{\sqrt{2}}{2}\right)=-20 \sqrt{2}
\end{aligned}
$$

FINDING THE ANGLE BETWEEN TWO VECTORS:

$a \cdot b=|a||b| \cos \theta$
6) Find the angle between $\boldsymbol{s}=\langle 3,0\rangle$ and $\mathbf{t}=\langle 1,6\rangle$.

$$
s \cdot t=3(1)+O(6)=3
$$

$$
\cos \theta=\frac{a \cdot b}{|a||b|} \quad \theta=\cos ^{-1}\left(\frac{a \cdot b}{|a||b|}\right)
$$

$|s|=\sqrt{3^{2}+0^{2}}=3 \quad|t|=\sqrt{1^{2}+6^{2}}=\sqrt{37} \quad \theta=\cos ^{-1}\left(\frac{3}{3 \cdot \sqrt{37}}\right)=\cos ^{-1}\left(\frac{1}{\sqrt{37}}\right) \approx 80.5^{\circ}$

ORTHOGONAL VECTORS: Two vectors are orthogonal (perpendicular) if $\mathbf{u} \cdot \mathbf{v}=0$

*Perpendicular implies an intersection. Two vectors can be orthogonal to one another, they do not need to intersect.
*WHY? I If $\mathbf{u} \cdot \mathbf{v}=0$, then: $\cos \theta=\frac{u \cdot v}{|u||v|}=\frac{0}{|u||v|}=0$

$$
\begin{aligned}
& \cos \theta=0 \\
& \theta=\cos ^{-1}(0) \\
& \theta=90^{\circ}
\end{aligned}
$$

7) Determine if the vectors are orthogonal.
a) $\mathbf{a}=\langle-2,5\rangle \mathbf{b}=\langle 15,6\rangle$
b) $\mathbf{c}=5 \mathbf{i}-2 \mathbf{j} \quad \mathbf{d}=3 \mathbf{i}+4 \mathbf{j}$

$$
\begin{aligned}
a \cdot b & =-2 \cdot 15+5 \cdot 6 \\
& =-30+30 \\
& =0 \text { yES! }
\end{aligned}
$$

$$
\begin{aligned}
c \cdot d & =5(3)+(-2)(4) \\
& =15-8 \\
& =7 \text { NO. }
\end{aligned}
$$

