10.4 Notes (Part 2)

VECTORS: AN ALGEBRAIC APPROACH

OBJECTIVES: 1) Find the dot product of two vectors.

2) Find the angle between two vectors.

THE DOT PRODUCT (ALGEBRAIC)

Given two vectors $\boldsymbol{u} = \langle a_1, b_1 \rangle$ and $\boldsymbol{v} = \langle a_2, b_2 \rangle$, we define the **dot product** $\boldsymbol{u} \cdot \boldsymbol{v}$ as

 $\boldsymbol{u} \boldsymbol{\cdot} \boldsymbol{v} = a_1 \boldsymbol{\cdot} a_2 + b_1 \boldsymbol{\cdot} b_2$

Note: The dot product will yield a scalar (real number), which is why it's also referred to as a scalar product.

1) Find the dot product $\mathbf{s} \cdot \mathbf{t}$, if $\mathbf{s} = \langle -3, 4 \rangle$ and $\mathbf{t} = \langle 2, -5 \rangle$.

s.t = -3.2 + 4.-5= -6+ -20 = -26

2) If $\mathbf{w} = 2\mathbf{i} + 2\mathbf{j}$ and $\mathbf{m} = 3\mathbf{i} - 3\mathbf{j}$, find the dot product.

$$w \cdot m = 2(3) + 2(-3)$$

= 6+-6

PROPERTIES OF THE DOT PRODUCT 1) $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{u}$ 2) $\boldsymbol{u} \cdot (\boldsymbol{v} + \boldsymbol{w}) = \boldsymbol{u} \cdot \boldsymbol{v} + \boldsymbol{u} \cdot \boldsymbol{w}$ 4) $a(\boldsymbol{u} \cdot \boldsymbol{v}) = a\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u} \cdot a\boldsymbol{v}$

3) The magnitude of a vector is 7. What is $\mathbf{v} \cdot \mathbf{v}$? 4) Suppose $\mathbf{v} \cdot \mathbf{v} = 3$. What is the magnitude of \mathbf{v} ?

|v| = 7 $v \cdot v = |v|^2 = 7^2 = 49$ $v \cdot v = 49$ $v \cdot v = 49$

THE DOT PRODUCT (GEOMETRIC) Given two vectors $\boldsymbol{u} = \langle a_1, b_1 \rangle$ and $\boldsymbol{v} = \langle a_2, b_2 \rangle$, we define the **dot product** $\boldsymbol{u} \cdot \boldsymbol{v}$ as $\boldsymbol{u} \cdot \boldsymbol{v} = |\boldsymbol{u}| \cdot |\boldsymbol{v}| \cos \theta$ **Proof:** First, suppose that θ is the angle between two non-zero vectors as shown in the diagram below.

ORTHOGONAL VECTORS: Two vectors are orthogonal (perpendicular) if $\mathbf{u} \cdot \mathbf{v} = 0$ *Perpendicular implies an intersection. Two vectors can be orthogonal to one another, they do not need to intersect.

*WHY? If $\mathbf{u} \cdot \mathbf{v} = 0$, then: $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} = \frac{0}{|\mathbf{u}| |\mathbf{v}|} = 0$ $\cos \theta = 0$ $\theta = \cos^{-1}(o)$ $\theta = q0^{\circ}$ 7) Determine if the vectors are orthogonal. a) $\mathbf{a} = \langle -2, 5 \rangle \mathbf{b} = \langle 15, 6 \rangle$ $\mathbf{a} \cdot \mathbf{b} = -2 \cdot 15 + 5 \cdot 6$ = -30 + 30= 0 $(\mathbf{y} \in \mathbf{s} : \mathbf{s} : \mathbf{s} = \mathbf$