OBJECTIVES: 1) Sketch curves that are represented by sets of parametric equations.
2) Eliminate the parameter to rewrite parametric equations as singular rectangular equations.

What is a parametric equation? A system of equations with more than one dependent variable. Often, parametric equations are used to represent the position of a moving point.

Imagine you are riding a Ferris wheel that has a 35^{\prime} radius and whose lowest point is 5^{\prime} off of the ground. It completes one clockwise rotation every 12 seconds. Your x and y position both depend on time. We call time the parameter.

\mathbf{t}	\mathbf{x}	\mathbf{y}
0	35	40
3	0	5
6	-35	40
9	0	75
12	35	40

x position: $x(t)=35 \cos \left(\frac{\pi}{6} t\right)$
y position: $y(t)=-35 \sin \left(\frac{\pi}{6} t\right)+40$

So $x(t)=35 \cos \left(\frac{\pi}{6} t\right)$ and $y(t)=-35 \sin \left(\frac{\pi}{6} t\right)+40$ are parametric equations that describe your position on the Ferris wheel at any time t .

PARAMETRIC EQUATIONS

- If f and g are continuous functions of t on an interval I, then the set of ordered pairs (x, y) such that $x=f(t)$ and $y=g(t)$ is a plane curve.
- The equations $x=f(t)$ and $y=g(t)$ are parametric equations for the curve.
- The variable t is the parameter.
- Parametric equations have a definite direction of motion, called the orientation of the curve.

GRAPHING USING A TABLE

1) Sketch the parametric curve for the following set of parametric equations: $x=t^{2}+t$ and $y=2 t-1$ Select values of t, plug them into the parametric equations and plot the points:

\mathbf{t}	\mathbf{x}	\mathbf{y}
-2	2	-5
-1	0	-3
$-\frac{1}{2}$	$-\frac{1}{4}$	-2
0	0	-1
1	2	1

2) Sketch the parametric curve for the following set of parametric equations:

$$
x=t^{2}-2 \quad y=3 t
$$

GRAPHING BY ELIMINATING THE PARAMETER

3) Sketch the parametric curve for the following set of parametric equations:

$$
\begin{array}{ccr}
x=t^{2}-2 & y=3 t & -2 \leq t \leq 2 \\
x+2=t^{2} & \text { OR } & \frac{y}{3}=t \\
\pm \sqrt{x+2}=t & \text { so, } x=\left(\frac{y}{3}\right)^{2}-2 \\
\text { So, } y= \pm 3 \sqrt{x+2} & & x=\frac{y^{2}}{9}-2
\end{array}
$$

$$
\text { So, } x=\left(\frac{y}{2}\right)^{2}-2 \quad \text { Then graph }
$$

u/in the interval

$$
-2 \leq t \leq 2
$$

Eliminating the parameter is not always easy, and in some cases, it's not even possible.
In those cases, you would need to set up a table to graph.

GRAPHING ON YOUR CALCULATOR

4) Sketch the parametric curve for the following set of parametric equations:

$$
x=t^{2}-2 \quad y=3 t \quad-2 \leq t \leq 2
$$

5) Sketch the parametric curve for the set of parametric equations. Clearly indicate the direction of motion.

$$
\begin{aligned}
& x=5 \cos t \quad y=2 \sin t \quad 0 \leq t \leq 2 \pi \\
& \frac{x}{5}=\cos t \quad \frac{y}{2}=\sin t \\
& \cos ^{2} t+\sin ^{2} t=1 \\
& \left(\frac{x}{3}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1 \\
& \frac{x^{2}}{25}+\frac{y^{2}}{4}=1 \\
& \text { Ellipse! } \\
& \text { Direction of motion: } \\
& \text { (c) } t=0 \quad x=5 \cos 0 \leq y=2 \sin 0 \\
& x=5 \quad y=0 \\
& e t=\frac{\pi}{2} \\
& \begin{array}{c}
x=5 \cos \frac{\pi}{2}: y=2 \sin \frac{\pi}{2} \\
x=0 \quad y=2
\end{array} \\
& \therefore \text { Counter clockwise }
\end{aligned}
$$

6) Sketch the parametric curve for the set of parametric equations. Clearly indicate the direction of motion.

$$
\begin{aligned}
& x=6 \sin t \\
& \frac{x}{6}=\sin t \quad y=3 \cos t \\
& \sin ^{2} t+\cos ^{2} t=1 \\
& \left(\frac{x}{6}\right)^{2}+\left(\frac{y}{3}\right)^{2}=1 \\
& \frac{x^{2}}{36}+\frac{y^{2}}{9}=1
\end{aligned}
$$

Orientation: clockwise

