OBJECTIVES: 1) Graph in polar coordinate form.
2) Change from polar to rectangular coordinates.

CARTESIAN US. POLAR COORDINATES

Coordinate systems are used to describe the location of a point in space.

The Cartesian system describes how we should move from the origin both horizontally and vertically using coordinates (x, y).

In the polar system, we begin with a fixed point O in the plane called the pole (or origin) and draw from O a ray called the polar axis. Then each point P can be assigned polar coordinates $P(r, \theta)$ where

- r is the distance from O to P
- θ is the angle between the polar axis and the segment $\overline{O P}$
- If θ is positive, we measure counter-clockwise from polar axis. If θ is negative, we measure in clockwise direction.
- If r is negative, then $P(r, \theta)$ is r units from the pole in the opposite direction of θ.

The polar system describes the distance straight from the origin to a point and determines the angle this segment makes with the positive x -axis.

$$
P(-r, \theta)
$$

- Plot the following points:

$$
A\left(1, \frac{3 \pi}{4}\right) \quad B\left(3,-\frac{\pi}{6}\right) \quad C(3,3 \pi) \quad D\left(-4, \frac{\pi}{4}\right)
$$

- $P(r, \theta)$ can be represented by:

$$
P(r, \theta+2 \pi n) \quad \text { or } \quad P(-r, \theta+(2 n+1) \pi)
$$

- If $P\left(2, \frac{\pi}{3}\right)$, list four other polar coordinates for P.

$$
r>0 \quad r<0
$$

$$
\left(2, \frac{7 \pi}{3}\right)\left(2,-\frac{5 \pi}{3}\right) \quad\left(-2, \frac{4 \pi}{3}\right)\left(-2,-\frac{2 \pi}{3}\right)
$$

CONVERTING POLAR/RECTANGULAR COORDINATES
From the diagram, we arrive at the following relationships using
 Pythagorean Theorem and right-triangle trig:

$$
\begin{array}{ll}
x^{2}+y^{2}=r^{2} & \\
\cos \theta=\frac{x}{r} & \sin \theta=\frac{y}{r} \quad \tan \theta=\frac{y}{x} \\
r \cos \theta=x & r \sin \theta=y
\end{array}
$$

1) Convert each rectangular point to polar coordinates:

$$
\text { a) } \begin{array}{rlrl}
(-1,1) \quad x^{2}+y^{2} & =r^{2} \\
r= \pm \sqrt{2} \\
\tan \theta=\frac{y}{x} & \tan \theta & =-1 \\
\theta & =\frac{3 \pi}{4} \text { or } \frac{-\pi}{4}
\end{array}
$$

$(-1,1)$ lies in quad 2 ! $\quad\left(\sqrt{2}, \frac{3 \pi}{4}\right)$ or $\left(-\sqrt{2},-\frac{\pi}{4}\right)$
b) $(0,2)$

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& r= \pm 2
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{2}{0}<\text { undefined: } \\
\theta & =\frac{\pi}{2} \text { or } \frac{-\pi}{2} \quad\left(2, \frac{\pi}{2}\right)
\end{aligned}
$$

or
2) Given the polar coordinates, find the rectangular coordinates
a) $\left(5, \frac{2 \pi}{3}\right)$
b) $\left(\sqrt{3}, \frac{\pi}{6}\right)$

$$
\left(-2,-\frac{\pi}{2}\right)
$$

$$
\begin{array}{ll}
x=5 \cos \left(\frac{2 \pi}{3}\right) & y=5 \sin \left(\frac{2 \pi}{3}\right) \\
x=5\left(-\frac{1}{2}\right) & y=5\left(\frac{\sqrt{3}}{2}\right) \\
x=\frac{-5}{2} & y=\frac{5 \sqrt{3}}{2}
\end{array} \quad\left(-\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right)
$$

$$
x=\sqrt{3} \cos \left(\frac{\pi}{6}\right) \quad y=\sqrt{3} \sin \left(\frac{\pi}{6}\right)
$$

$$
x=\sqrt{3} \cdot \frac{\sqrt{3}}{2} \quad y=\sqrt{3} \cdot \frac{1}{2}
$$

$$
x=\frac{3}{2}
$$

$$
y=\frac{\sqrt{3}}{2}
$$

$$
\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)
$$

CONVERTING A RECTANGULAR EQUATION TO A POLAR FORM
3) Convert the rectangular equation to polar form: $x^{2}=4 y$

Use direct conversion

$$
\begin{gathered}
(r \cos \theta)^{2}=4 r \sin \theta \\
r^{2} \cos ^{2} \theta=4 r \sin \theta \\
r=\frac{4 r \sin \theta}{r \cos ^{2} \theta} \\
r=\frac{4 \tan \theta}{\cos \theta}
\end{gathered}
$$

4) Convert the rectangular equation to polar form: $4 x+7 y-2=0$

$$
\begin{array}{r}
4 r \cos \theta+7 r \sin \theta-2=0 \\
r(4 \cos \theta+7 \sin \theta)=2 \\
r=\frac{2}{4 \sin \theta+7 \sin \theta}
\end{array}
$$

5) Convert the rectangular equation to polar form: $x^{2}+y^{2}-8 y=0$

$$
\begin{array}{r}
r^{2}-8 r \sin \theta=0 \\
r(r-8 \sin \theta)=0 \\
r-8 \sin \theta=\frac{0}{r} \\
r=8 \sin \theta
\end{array}
$$

$$
\text { notice patterns: } x^{2}+y^{2}=r^{2}
$$

CONVERTING A POLAR EQUATION TO RECTANGULAR FORM

Convert the polar equation to rectangular form. If possible, determine the graph of the equation from its rectangular form.
6) $r=5 \sec \theta$

$$
\begin{aligned}
& r=\frac{5}{\cos \theta} \\
& \begin{array}{l}
\begin{array}{l}
\cos \theta \\
x=5
\end{array} \longleftrightarrow \prod_{\downarrow} \longleftrightarrow x=5 \\
\lfloor
\end{array}
\end{aligned}
$$

8) $r=2+2 \cos \theta$

$$
\begin{aligned}
& r^{2}=2 r+2 r \cos \theta \\
& x^{2}+y^{2}=2 r+2 x \\
& \left(x^{2}+y^{2}-2 x\right)^{2}=(2 r)^{2} \\
& \left(x^{2}+y^{2}-2 x\right)^{2}=4 r^{2} \\
& \left(x^{2}+y^{2}-2 x\right)^{2}=4\left(x^{2}+y^{2}\right) \\
& y_{u c k!}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7) } r=2 \sin \theta \\
& r=2 \sin \theta \\
& r^{2}=2 r \sin \theta \\
& x^{2}+y^{2}=2 y \\
& x^{2}+y^{2}-2 y=0 \\
& x^{2}+y^{2}-2 y+1=1 \\
& x^{2}+(y-1)^{2}=1
\end{aligned}
$$

Circle: center at $(0,1)$ radius 1
9) $r=\sin \left(\theta-\frac{\pi}{4}\right)$
$r=\sin \theta \cos \left(\frac{\pi}{4}\right)-\cos \theta \sin \left(\frac{\pi}{4}\right)$
$r=\frac{\sqrt{2}}{2} \sin \theta-\frac{\sqrt{2}}{2} \cos \theta$
$r^{2}=\frac{\sqrt{2}}{2} r \sin \theta-\frac{\sqrt{2}}{2} r \cos \theta$

$$
x^{2}+y^{2}=\frac{\sqrt{2}}{2} y-\frac{\sqrt{2}}{2} x
$$

$$
\begin{aligned}
& x^{2}+\frac{\sqrt{2}}{2} x+y^{2}-\frac{\sqrt{2}}{2} y=0 \\
& x^{2}+\frac{\sqrt{2}}{2} x+\frac{1}{8}+y^{2}-\frac{\sqrt{2}}{2} y+\frac{1}{8}=\frac{1}{8}+\frac{1}{8} \\
& \left(x+\frac{\sqrt{2}}{4}\right)^{2}+\left(x-\frac{\sqrt{2}}{4}\right)^{2}=\frac{1}{4}
\end{aligned}
$$

THE POLAR DISTANCE FORMULA:

$$
d^{2}=r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)
$$

THE POLAR CIRCLE FORMULA:

$$
\begin{aligned}
& a^{2}=r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right) \\
& \text { Radius a and center }\left(r_{0}, \theta_{0}\right)
\end{aligned}
$$

Find the equation of a circle with:
11) radius 5 and center $(0,0)$

$$
r=5
$$

12) radius 1 and center $\left(2, \frac{\pi}{6}\right)$

$$
\begin{aligned}
& 1=r^{2}+4-2(r)(2) \cos \left(\theta-\frac{\pi}{6}\right) \\
& 1=r^{2}+4-4 r \cos \left(\theta-\frac{\pi}{6}\right)
\end{aligned}
$$

