DEMOIVRE'S THEOREM

OBJECTIVES: 1) Write complex numbers in rectangular and polar form.
2) Multiply and divide complex numbers in polar form.

COMPLEX NUMBERS IN RECTANGULAR FORM

A complex number is any number that can be written in the form $a+b i$ where a and b are real numbers and i is the imaginary u nit. Therefore, every complex number $a+b i$ is associated with a unique ordered pair of real numbers (a, b) and vice versa.

Graph the following numbers in the complex plane:

COMPLEX PLANE

COMPLEX NUMBERS IN POLAR FORM

Complex numbers can also be written in polar form, using polar-rectangular relationships.

$r=\sqrt{a^{2}+b^{2}}$ (risthemodulus) $\tan \theta=\frac{b}{a}$

$$
a=r \cos \theta \quad b=r \sin \theta \quad \theta \text { is the } \begin{aligned}
& \text { argument }
\end{aligned}
$$

$a+b i=r \cos \theta+r \sin \theta i$

$$
=r(\cos \theta+i \sin \theta)
$$

r is positive, θ is not unique!
CIS FORM: If $2=a+b i$
$z=r \operatorname{cis} \theta$
(trig or polar form of complex number)

1) Express the complex number in rectangular form:
a) $z=3\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
b) $z=6\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right)$
$z=3 \operatorname{cis} \frac{\pi}{3} \quad r=3 \quad \theta=\frac{\pi}{3}$
$a=6 \cos \frac{5 \pi}{3} \quad b=6 \sin \frac{5 \pi}{3}$
$a=r \cos \theta \quad b=r \sin \theta$
$a=3 \cos \frac{\pi}{3} \quad b=3 \sin \frac{\pi}{3}$ $a=6 \cdot\left(\frac{1}{2}\right) \quad b=6\left(-\frac{\sqrt{3}}{2}\right)$
$a=3\left(\frac{1}{2}\right) \quad b=3\left(\frac{\sqrt{3}}{2}\right) \quad$ rectangul form

$$
a=3 \quad b=-3 \sqrt{3}
$$ $a+b i=\sqrt{\frac{3}{2}+\frac{3 \sqrt{3}}{2} i}$

$$
a+b i=3-3 \sqrt{3} i
$$

2) Express the complex number in trigonometric form:
a) $z=-\sqrt{2}+i \sqrt{2}$
$r=\sqrt{a^{2}+b^{2}} \quad r=\sqrt{(-\sqrt{2})^{2}+(\sqrt{2})^{2} \quad r=\sqrt{4}}$
$\tan \theta=\frac{\sqrt{2}}{-\sqrt{2}}=-1 \quad \theta=\frac{3 \pi}{4}$ or $\quad r=2$
b) $z=-4+3 i$
$r=\sqrt{4^{2}+3^{2}}=5 \quad \tan \theta=\frac{3}{-4} \quad \theta \approx-36.87$ $\theta \approx 143.1$
$z=a+b i \quad a=r \cos \theta \quad b=r \sin \theta$
$z=2 \cos \frac{3 \pi}{4}+2 \sin \frac{3 \pi}{4} i$
$z=2\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) \quad z=2 \cos \frac{3 \pi}{4}$

MULTIPLYING COMPLEX NUMBERS

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$. Find $z_{1} \bullet z_{2}$.

$$
\begin{aligned}
z_{1} \cdot z_{2} & =r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& =r_{1} \cdot r_{2}\left(\cos \theta_{1} \cos \theta_{2}+i \cos \theta_{1} \sin \theta_{2}+i \sin \theta_{1} \cos \theta_{2}+i^{2} \sin \theta_{1} \sin \theta_{2}\right) \\
& =r_{1} \cdot r_{2}(\underbrace{\left.\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}+i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right)\right)} \\
& =r_{1} \cdot r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)
\end{aligned}
$$

If two complex numbers have polar form $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$, then $z_{1} \cdot z_{2}=r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)$ (to multiply complex numbers, multiply the moduli and add the arguments) $\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right) \quad$ (to divide complex numbers, divide the moduli and subtract the arguments)
3) If $z=8\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right)$ and $w=4\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$ find $z \cdot w$ and $\frac{z}{w}$. Express each answer in trig form and in rectangular form.

$$
\begin{aligned}
z \cdot w & =r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right) \\
& =8 \cdot 4 \operatorname{cis}\left(\frac{5 \pi}{3}+\frac{2 \pi}{3}\right) \\
& =32 \text { as }\left(\frac{7 \pi}{3}\right) \quad \text { (Trig form) } \\
& =32 \cos \frac{7 \pi}{3}+32 i \sin \frac{7 \pi}{3} \quad \text { Rectangular form }
\end{aligned}
$$

$$
\begin{aligned}
\frac{z}{\omega} & =\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right) \\
\frac{z}{\omega} & =\frac{8}{4} \operatorname{cis}\left(\frac{5 \pi}{3}-\frac{2 \pi}{3}\right) \\
\frac{z}{\omega} & =2 \cos \pi \quad \text { Trig form } \\
& =2 \cos \pi+i \sin \pi
\end{aligned}
$$

$$
=32 \cdot \frac{1}{2}+32 i \cdot \frac{\sqrt{3}}{2}=16+16 \sqrt{3} i{ }^{\text {Rectangle form }}=2(-1)+i 0=-2 \text { rectangular }
$$

