SYSTEMS OF LINEAR EQUATIONS

OBJECTIVES: 1) Use substitution and elimination to solve systems of equations in two variables.
2) Solve mixture problems and find the equation of a parabola through given points.

A SYSTEM OF, EQUATIONS:

Definition: A system of equations is a collection of two or more equations with a same set of unknowns. In solving a system of equations, we try to find values for each of the unknowns that will satisfy every equation in the system.

The equations in the system can be linear or non-linear. We focus on linear equations in 11.1.

$$
\left\{\begin{array}{l}
2 x-3 y=18 \\
x+2 y=-5
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
-2 x+3 y= \\
x^{2}+y=5
\end{array}\right.
$$

no solution

CONSISTENT

INFINITELY MANY SOLUTIONS

SOLVING A LINEAR SYSTEM BY SUBSTITUTION OR ELIIMINATION

Solve the following systems algebraically.

1) $\left\{\begin{array}{l}3 x-6 y=12 \\ x-2 y=6\end{array}\right.$
$x=2 y+6$

$$
\begin{aligned}
& 3(2 y+6)-6 y=12 \\
& 6 y+18-6 y=12 \\
& 18=12 \\
& \text { No solution (Inconsistent) }
\end{aligned}
$$

2) $\begin{cases}\frac{4}{x}-\frac{3}{y}=11 & \text { let } a=\frac{1}{x} \quad b=\frac{1}{y} \\ \frac{5}{x}-\frac{6}{y}=9 & (x, y)\left(\frac{3}{13}, \frac{9}{1 a}\right)\end{cases}$
$-2(4 a-3 b=11) \quad-5(4 a-3 b=11)$
$5 a-6 b=9 \quad 4(5 a-6 b=a)$

APPLICATION: FINDING A QUADRATIC EQUATION

3) Determine the constants b and c so that the parabola $y=x^{2}+b x+c$ passes through the points $(-2,1)$ and $(2,3)$.

$$
\begin{array}{lll}
\text { plug in }(-2,1): & 1=(-2)^{2}+(-2) b+c & 1=4-2 b+c
\end{array} \quad \begin{aligned}
& -2 b+c=-3 \\
& \text { plug in }(2,3): \\
& \\
& \\
& \\
& \\
& \\
& y=(2)^{2}+2 b+c+\frac{1}{2} x-2
\end{aligned} \quad \begin{array}{rr}
2 b+c=-1
\end{array}
$$

APPLICATION: MIXTURE PROBLEMS

4) A pharmacist mixed some of a 30% iodine solution with some of a 40% iodine solution. How much of each solution would be needed to produce 200 milliliters of a 36% iodine solution?

YOU TRY

5) Calvin mixes candy that sells for $\$ 2.00$ per pound with candy that costs $\$ 3.60$ per pound to make 50 pounds of candy selling for $\$ 2.16$ per pound. How many pounds of each kind of candy did he use in the mix?

$$
\begin{aligned}
& x=\# \text { lbs of } \$ 2.00 \text { candy } \\
& y=\# \text { lbs of } \$ 3.60 \text { candy }
\end{aligned}
$$

$$
x+y=50 \quad \Rightarrow \quad x+y=50 \quad-20 x-20 y=-1000
$$

$$
2 x+3.6 y=56(2.16) \stackrel{\Rightarrow}{20 x+36 y}=1080 \quad \underbrace{20 x+36 y}=1080
$$

$$
\text { He mixes } 45 \mathrm{lbs} \text { of } 2.00 \text { candy and } 5 \mathrm{lbs} \text { of } 3.00\}
$$

$$
\begin{aligned}
& x=\# \text { of } \mathrm{mL} \text { of } 30 \% \text { rodin } \\
& y=\# \text { of } \mathrm{mL} \text { of } 40 \% \text { iodine } \\
& x+y=200 \quad \Rightarrow \quad x+y=200 \quad-30 x-30 y=-6000 \\
& .30 x+.40 y=.36(200) \quad 30 x+40 y=7200 \quad \frac{30 x+40 y=7200}{10 y=1200} \\
& 80 \mathrm{~mL} \text { of } 30 \% \text { and } 120 \mathrm{~mL} \text { of } 40 \% \\
& \begin{aligned}
10 y & =1200 \\
y & =120 \\
x & =80
\end{aligned}
\end{aligned}
$$

