## THE REMAINDER THEOREM AND FACTOR THEOREM

OBJECTIVES: 1) Check for a zero or a root by using the definition of a root.
2) Use remainder theorem to check for a factor.
3) Use factor theorem to solve polynomial equations.

## DEFINITION

Given a polynomiał $p(x)$, a number " $k$ " is a zero (root) of $p(x)$ if $p(k)=0$.

1) Is $\sqrt{3}$ a root of $f(x)=2 x^{4}+x^{2}-21$

$$
\begin{aligned}
f(\sqrt{3}) & =2(\sqrt{3})^{4}+(\sqrt{3})^{2}-21 \\
& =2\left(3^{2}\right)+3-21 \quad \text { Yes! } f(\sqrt{3})=0! \\
& =2(9)+3-21
\end{aligned}
$$



$$
=0
$$

## MULTIPLICTY OF ROOTS

Let $f(x)=(x-\sqrt{2})(5 x+3)^{2}(x+4)^{3}$.

$$
\begin{aligned}
& (x-\sqrt{2}) \\
& \sqrt{2} \rightarrow \text { single root } \begin{array}{c}
(5 x+3)^{2} \\
\frac{-3}{5} \rightarrow \text { double root } \\
(x+4)^{3} \\
-4 \rightarrow \text { "root of multiplicity 3" }
\end{array} .
\end{aligned}
$$



FACTOR THEOREM: $(x-b)$ is a factor of $f(x)$ if and only if $f(b)=0$. In other words: a) If $(x-r)$ is a factor of $f(x)$, then $\qquad$ $f(r)=0$

b) If $f(r)=0$, then (x-r) is a factor of $f(x)$.

REMAINDER THEOREM: When a polynomial $f(x)$ is divided by $(x-r)$, then the remainder is $f(r)$.
2) Is 2 a root of $x^{3}-4 x^{2}+3 x+7$ ?

$$
2\left|\begin{array}{ccc}
1 & -4 & 3 \\
\\
2 & -4 & -2 \\
1 & -2 & -1 \\
\hline
\end{array}\right| \begin{gathered}
\text { Synthetic } \\
\text { substitution }
\end{gathered}
$$

$$
\begin{aligned}
f(2) & =2^{3}-4(2)^{2}+3(2)+7 \\
& =8-16+6+7 \quad f(2)=5 \Rightarrow 2 \text { is not a root! } \\
& =5 \quad-2-15
\end{aligned}
$$


3) Find $f(-3)$ to determine whether $(x+3)$ is a factor of $f(x)=2 x^{4}+5 x^{3}-2 x-8$.

$$
\begin{gathered}
f(-3)=2(-3)^{4}+5(-3)^{3}-2(-3)-8=25 \\
f(-3)=25
\end{gathered}
$$

$$
\begin{gathered}
-3 \left\lvert\, \begin{array}{cccc}
2 & 5 & 0 & -2 \\
-6 & -8 \\
-6 & 3 & -9 & 33 \\
2 & -1 & 3 & -11
\end{array} 25\right.
\end{gathered}
$$

4) Solve $f(x)=x^{4}-2 x^{3}-10 x^{2}+4 x+16=0$ knowing -2 and $\sqrt{ } 2$ are roots.

$$
\begin{aligned}
& (x+2)(x-\sqrt{2}) \text { are factors? } \\
& -2 \left\lvert\, \begin{array}{ccccc}
1 & -2 & -10 & 4 & 16 \\
& -2 & 8 & 4 & -16 \\
\hline & -4 & -2 & 8 & 0 .
\end{array}\right. \\
& x^{3}-4 x^{2}-2 x+8 \\
& \sqrt{2}\left|\begin{array}{cccc}
1 & -4 & -2 & 8 \\
& \sqrt{2} & -4 \sqrt{2}+2 & -8
\end{array}\right| \begin{array}{llll}
1 & -4+\sqrt{2} & -4 \sqrt{2} & 0
\end{array} \\
& x^{2}+(-4+\sqrt{2}) x-4 \sqrt{2}=0 \\
& x^{2}-4 x+\sqrt{2} x-4 \sqrt{2}=0 \\
& (x+\sqrt{2})(x-4)=0 \\
& x=-\sqrt{2} \quad x=4 \quad \text { and original roots! } \\
& x=-2 \quad x=\sqrt{2}
\end{aligned}
$$

5) Find a polynomial with degree 3 and a root of 1 with multiplicity 2 and a root of -2 .

$$
f(x)=(x-1)^{2}(x+2)
$$

