THE FUNDAMENTAL THEOREM OF ALGEBRA

OBJECTIVES: 1) Express a polynomial in the factored form $a_n(x - r_1)(x - r_2)$.

2) Write the equation of a quadratic given specific roots.

THE FUNDAMENTAL THEOREM OF ALGEBRA:

Every polynomial equation of the form

 $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$ $(n \ge 1, a_n \ne 0)$

has at least one root within the complex number system. (This root may be a real number.)

THE LINEAR FACTORS THEOREM:

A **polynomial f(x)** with degree n can be expressed as the product of n linear factors.

Let
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 = a_n (x - r_n) (x - r_{n-1}) \dots (x - r_1)$$

(The complex numbers r_k that appear in these factors are not necessarily all distinct,

and some or all of the r_k may be real numbers.

1) Express
$$3x^{2} + x - 2$$
 as $a_{n}(x - r_{1})(x - r_{2})$.
 $(3x - 2)(x + 1)$
 $3(x - 2)(x + 1)$
 $r_{1} = \frac{2}{3}$ $r_{2} = -1$

2) Express
$$x^{3} + 3x^{2} - 3x - 9$$
 as $a_{n}(x - r_{1})(x - r_{2})...$
 $x^{2}(x + 3) - 3(x + 3)$
 $(x^{2} - 3)(x + 3)$
 $(x + \sqrt{3})(x - \sqrt{3})(x + 3)$

3) Create **a** polynomial using the table below.

Root	Multiplicity
-1	2
3	1
0	2

APPL

$$f(x) = x^{2}(x-3)(x+1)^{2}$$

4) Find the EXACT quadratic polynomial with roots -1 and 2 and through (6,2).

$$f(x) = a(x + 1)(x - 2)$$

$$Y = a(x + 1)(x - 2)$$

$$2 = a(7)(4)$$

$$f(x) = \frac{1}{14}(x + 1)(x - 2)$$

$$x^{2} + bx + c = 0$$

$$r_{1} \bullet r_{2} = c \quad r_{1} + r_{2} = -b$$
Proof:
$$x^{2} + bx + c = (x - r_{1})(x - r_{2})$$

$$x^{2} + bx + c = x^{2} - r_{1}x - r_{2}x + r_{1}r_{2}$$

$$(-r_{1} - r_{2}) = b \qquad (c = r_{1}r_{2})$$

$$r_{1} \bullet r_{2} = -b$$

5) Find a quadratic equation with roots $r_1 = 2 - 3i$ and $r_1 = 2 + 3i$.

$$c = r_1 \cdot r_2 - b = r_1 + r_2$$

$$c = (2 - 3i)(2 + 3i) - b = (2 - 3i) + (2 + 3i)$$

$$4 - 9i^2 - b = 4$$

$$4 + 9$$

$$c = 13$$

$$x^2 - 4x + 13 = 6$$