THE FUNDAMENTAL THEOREM OF ALGEBRA

OBJECTIVES: 1) Express a polynomial in the factored form $a_{n}\left(x-r_{1}\right)\left(x-r_{2}\right)$.
2) Write the equation of a quadratic given specific roots.

THE FUNDAMENTAL THEOREM OF ALGEBRA:

Every polynomial equation of the form

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=0 \quad\left(n \geq 1 . a_{n} \neq 0\right)
$$

has at least one root within the complex number system. (This root may be a real number.)

THE LINEAR FACTORS THEOREM:

A polynomial $\mathbf{f}(\mathbf{x})$ with degree n can be expressed as the product of n linear factors.
Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}=a_{n}\left(x-r_{n}\right)\left(x-r_{n-1}\right) \ldots\left(x-r_{1}\right)$
(The complex numbers r_{k} that appear in these factors are not necessarily all distinct, and some or all of the r_{k} may be real numbers.

1) Express $3 x^{2}+x-2$ as $a_{n}\left(x-r_{1}\right)\left(x-r_{2}\right)$.

$$
\begin{aligned}
& (3 x-2)(x+1) \\
& 3(x-2 / 3)(x+1) \\
& r_{1}=\frac{2}{3} \quad r_{2}=-1
\end{aligned}
$$

2) Express $x^{3}+3 x^{2}-3 x-9$ as $a_{n}\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots$.

$$
\begin{aligned}
& x^{2}(x+3)-3(x+3) \\
& \left(x^{2}-3\right)(x+3) \\
& (x+\sqrt{3})(x-\sqrt{3})(x+3)
\end{aligned}
$$

3) Create a polynomial using the table below.

Root	Multiplicity
-1	2
3	1
0	2

$$
f(x)=x^{2}(x-3)(x+1)^{2}
$$

4) Find the EXACT quadratic polynomial with roots -1 and 2 and through $(6,2)$.

$$
\begin{array}{rlr}
f(x) & =a(x+1)(x-2) & \\
y & =a(x+1)(x-2) & \\
2 & =a(7)(4) & f(x)=\frac{1}{14}(x+1)(x-2) \\
2 & =28 a &
\end{array}
$$

APPLYING THE LINEAR FACTORS

$$
\begin{gathered}
x^{2}+b x+c=0 \\
r_{1} \bullet r_{2}=c \quad r_{1}+r_{2}=-b
\end{gathered}
$$

Proof: $\quad x^{2}+b x+c=\left(x-r_{1}\right)\left(x-r_{2}\right)$

$$
\begin{aligned}
x^{2}+b x+c & =x^{2}-r_{1} x-r_{2} x+r_{1} r_{2} \\
\left(-r_{1}-r_{2}\right) & =b \\
-\left(r_{1}+r_{2}\right) & =b \\
r_{1}+r_{2} & =-b
\end{aligned}
$$

5) Find a quadratic equation with roots $r_{1}=2-3 i$ and $r_{1}=2+3 i$.

