OBJECTIVES: 1) Find all roots of a polynomial equation.
2) Simplify powers of i.

THE RATIONAL ROOTS THEOREM:

For every polynomial of the form: $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=0$
first find all the factors of a_{0} (call them p) and all the factors of a_{n} (called q)
then a list of possible rational roots is found by creating all possible p / q 's.

THE UPPER BOUND AND LOWER BOUND THEOREM

If b is positive and b

then b is an upper bound; there are no rational roots above b.

If b is negative and b

then b is a lower bound;
there are no rational roots below b .

1) Find all roots of $6 x^{3}+5 x^{2}-3 x-2=0$.

$$
\left.\left.\begin{array}{l}
\frac{P}{9}=\frac{ \pm 1, \pm 2}{ \pm 1, \pm 2, \pm 3, \pm 6}
\end{array}= \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3},+\frac{1}{6}, \pm 2, \pm 2 / 3\right\} \begin{array}{c}
\text { List of ALL } \\
\text { possible } \\
\text { rational roots }
\end{array}\right] \quad x=\frac{1 \pm \sqrt{1-4(6)(-2)}}{2(6)} \quad \begin{aligned}
& \text { All roots: } \\
& -1 \left\lvert\, \begin{array}{ccc}
6 & 5-3-2 \\
-6 \cdot 1 & 2 \\
6-1-2
\end{array} \quad x=\frac{1 \pm \sqrt{49}}{12}\right.
\end{aligned}
$$

2) Show that no rational roots exist for the equation $\frac{1}{4} x^{4}-\frac{3}{4} x^{3}+\frac{17}{4} x^{2}+4 x+5=0$.

None of the possible rational roots >4 can be roots.

None of the possible roots <-1 can be roots. Zero is also not a root of the equation, \therefore there are

NO rational roots.

THE LOCATION THEOREM:

For every polynomial of the form: $\quad a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=0$
If a and b are real numbers such that $f(a)$ and $f(b)$ have opposite signs, then the equation $f(x)=0$ has at least one real root between a and b.
3) Find the roots between successive hundredths using $x^{3}-3 x^{2}+3 x-26=0$.

$$
\begin{aligned}
& f(3)=-17>\text { sign change! } \therefore \text { a root exists between } 3 \leq 4 \\
& f(4)=+2 \\
& f(3.8)=-3.048 \\
& f(3.9)=-.611>\text { root between } 3.9 \leq 4.0 \\
& f(4.0)=2
\end{aligned}
$$

$f(3.91)=-.358$
$f(3.92)=-.103>$ sign change!
$f(3.93)=.154$

Root occurs between
open interval $(3.92,3.93)$

DIVIDING COMPLEX NUMBERS:

4) $\frac{7-8 i}{2 i} \cdot \frac{i}{i}=\frac{7 i-8 i^{2}}{2 i^{2}}$
5) $\frac{2-4 i}{1+3 i} \cdot \frac{1-3 i}{1-3 i}$
6) $\frac{3+4 i}{7-i} \cdot \frac{7+i}{7+i}$
$=\frac{7 i+\theta}{-2}$

$$
\begin{aligned}
\frac{2-6 i-4 i+12 i^{2}}{1-9 i^{2}} & =\frac{-10 i-10}{10} \\
& =-i-1
\end{aligned}
$$

$$
\frac{21+3 i+28 i+4 i^{2}}{49-i^{2}}=\frac{17+31 i}{50}
$$

SIMPLIFYING POWERS OF i

7) $i^{24}=\left(i^{2}\right)^{12}$
8) $i^{23}=\left(i^{2}\right)^{11} i$
9) $i^{100}=\left(i^{2}\right)^{50}$
10) $i^{49}=\left(i^{2}\right)^{24} i$
$=(-1)^{12}$
$=(-1)^{11} i$
$=(-1)^{50}$
$=1$
11) $i^{38}=\left(i^{2}\right)^{19}$
$=-i$
$=1$
12) $(\sqrt[8]{5} \cdot i)^{24}=$
$=(-1)^{19}$
$\left(5^{\frac{1}{8}}\right)^{24} i^{24}$
$=-1$

$$
\frac{5^{3} i^{24}}{125}
$$

13) $(\sqrt[6]{3} \cdot i)^{18}=$
$\left(3^{\frac{1}{0}}\right)^{18} \cdot i^{18}$

$$
\begin{aligned}
& 3^{3} \cdot\left(i^{2}\right)^{9} \\
& 27 \cdot-1=-27
\end{aligned}
$$

