OBJECTIVES: 1) Rewrite a fractional expression as the sum of two simpler fractions.

PARTIAL FRACTIONS

Process of rewriting a function into simpler functions.

1) If $a x+b=7 x-12$ for all x, then $a=7$ and $b=-12$
2) If $p x^{3}+q x^{2}+r x+s=-4 x^{2}+1$ for all x, then $p=0, q=-4, r=0$, and $s=1$.

2 ASSUPMTIONS:

1) Proper fraction
2) Denominator is factorable

WHY? Calculus! It's easier to write a nasty function in terms of smaller functions when dealing with antiderivatives and other calculus topics

Rewrite the following as a sum or difference of partial fractions:

1) $\frac{5 x-1}{x^{2}-2 x-15} \quad \frac{\text { Method 1: }}{\frac{5 x-1}{(x-5)(x+3)}}=\frac{A}{(x-5)}+\frac{B}{(x+3)}$

$$
x=-3
$$

$$
5(-3)-1=A(0)+B(-8)
$$

$$
5 x-1=A(x+3)+B(x-5)
$$

$$
-16=-8 B
$$

SYSTEM
To SOLVE $\left\{\begin{aligned} 5 & =A+B \\ -1 & =3 A-5 B\end{aligned}\right.$
$-15=-3 A-3 B$
$-16=-8 B$
$B=2$
$A=3$

REPEATED LINEAR

2) $\frac{-x^{2}+2 x+4}{x^{3}-4 x^{2}+4 x}$

$$
\frac{-x^{2}+2 x+4}{x(x-2)^{2}}=\frac{A}{x}+\frac{B}{(x-2)}+\frac{C}{(x-2)^{2}}
$$

combo.

$$
-x^{2}+2 x+4=A(x-2)^{2}+B(x-2)(x)+C x
$$

let $x=0$
METHOD
$4=A(-2)^{2}+B(0)+C(0) \quad 2=-4 A-2 B+C$

$$
\left.\frac{1}{x}+\frac{-2}{(x-2)^{2}}+\frac{2}{(x-2)^{2}}\right)
$$

Equate coefficients:

$$
\begin{gathered}
-1=A+B \quad(A=1) \\
-1=1+B \\
B=-2
\end{gathered}
$$

$$
2=-4 A-2 B+C
$$

$$
2=-4+4+c
$$

$$
c=2
$$

IRREDUCIBLE QUADRATIC
3) $\frac{x^{2}+4 x+1}{x^{3}-x^{2}+x-1}=\frac{x^{2}+4 x+1}{x^{2}(x-1)+1(x-1)}=\frac{x^{2}+4 x+1}{\left(x^{2}+1\right)(x-1)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}$

$$
\begin{aligned}
& x^{2}+4 x+1=A\left(x^{2}+1\right)+(B x+C)(x-1) \\
& x=1 \\
& 1+4+1=A(2)+B x+C)(0) \\
& 6=2 A \\
& A=3
\end{aligned}
$$

$$
\frac{3}{x-1}+\frac{-2 x+2}{x^{2}+1}
$$

equate coefficients:
x^{2} :
constant:

$$
\begin{aligned}
& 1=A+B \\
& 1=3+B \\
& B=-2
\end{aligned}
$$

$$
I=A-C \quad \frac{3}{x-1}-\frac{2(x-1)}{x^{2}+1}
$$

YOU TRY!
4) $\frac{x-1}{x^{2}-x-6} \quad$ You'll get a fraction, don't think it's wrong!

$$
\begin{aligned}
& \frac{x-1}{(x-3)(x+2)}=\frac{A}{(x-3)}+\frac{B}{(x+2)} \\
& x-1=A(x+2)+B(x-3) \\
& x=-2 \\
& -3=A(0)+B(-5) \quad 2=A(5)+B(0) \\
& B=\frac{3}{5} \quad A=\frac{2}{5}
\end{aligned}
$$

$$
\frac{\frac{2}{5}}{(x+2)}+\frac{\frac{3}{5}}{(x-3)} \Rightarrow \frac{2}{5(x+2)}+\frac{3}{5(x-3)}
$$

