MATHEMATICAL INDUCTION (AGAIN!)

OBJECTIVES: 1) Use mathematical induction to prove a statement involving an inequality.

WRITING A PROOF BY INDUCTION

A proof by mathematical induction that a proposition $\mathrm{P}(\mathrm{n})$ is true for every positive integer n consists of two steps:

BASE CASE: Show that the proposition $\mathrm{P}(1)$ is true.
INDUCTIVE STEP: Assume that $\mathrm{P}(\mathrm{k})$ is true for an arbitrarily chosen positive integer k , and show that under that assumption, $\mathrm{P}(\mathrm{k}+1)$ must be true.

From these two steps we conclude (by the principle of mathematical induction) that for all positive integers n, $P(n)$ is true.

PROVING A STATEMENT THAT IS AN INEQUALITY

1) Use mathematical induction to show that the statement is true for all natural numbers: $3^{n} \geq 1+2 n$ for all $n \geq 1$

BASE CASE:

$$
P(1): \quad 3^{\prime} \geq 1+2
$$

$$
3 \geq 3 \quad \sqrt{ }
$$

inductive Step:
Assume $P(k)$ is true. Show that $P(k+1)$ is also true.

$$
\text { If } 3^{k} \geq 1+2 k \text { then } 3^{k+1} \geq 1+2(k+1)
$$

$$
3^{k+1} \geq 2 k+3
$$

Start with "if"
$3\left(3^{k}\right) \geq(1+2 k) 3$

$$
3^{k+1} \geq 3+6 k \text { "small" side, replace it w/ something }
$$ even smaller

$$
3^{k+1}>2 k+3
$$

$$
\begin{aligned}
\therefore P(n) \text { is true for } \quad \text { show that: } 3+6 k & \geq 2 k+3 \\
\text { all natural numbers. } & k \geq 0 \\
& \\
& 4 k
\end{aligned}
$$

2) Use mathematical induction to show that the statement is true for all natural numbers: $(1.25)^{n}>n$ for all $n \geq 11$

Base Case: Show that $P(11)$ is true.

$$
\begin{array}{ll}
P(11): & (1.25)^{11}>11 \\
& 11.64>11 \text { is true. }
\end{array}
$$

Inductive Step: Assume $P(k)$ is true. Show that $P(k+1)$ is the.

$$
\text { If }(1.25)^{k}>k \text {, then } 1.25^{k+1}>k+1
$$

$$
1.25\left(1.25^{k}\right)>1.25 k
$$

$$
1.25^{k+1}>1.25 \underbrace{k \geq 11 \longleftarrow \text { start w/ a true statement }}
$$

$$
\text { So, } 1.25^{k+1}>k+1
$$

$\therefore P(n)$ is true.

$$
.25 k \geq .25(11)
$$

$.25 k>1$
2 since $25(11)>1$

$$
\begin{gathered}
k+25 k>k+1 \text { now add } k \text { to both } \\
\text { sibs }
\end{gathered}
$$

$$
1.25 k>k+1
$$

