```
14.1
Notes
Day 2
```

MATHEMATICAL INDUCTION (AGAIN!)

OBJECTIVES: 1) Use mathematical induction to prove a statement involving an inequality.

WRITING A PROOF BY INDUCTION

A proof by mathematical induction that a proposition P(n) is true for every positive integer n consists of two

steps:

BASE CASE: <u>Show</u> that the proposition P(1) is true.

INDUCTIVE STEP: <u>Assume</u> that P(k) is true for an arbitrarily chosen positive integer k, and <u>show</u> that under that assumption, P(k+1) must be true.

From these two steps we conclude (by the principle of mathematical induction) that for all positive integers n, P(n) is true.

PROVING A STATEMENT THAT IS AN INEQUALITY

373 J

1) Use mathematical induction to show that the statement is true for all natural numbers: $3^n \ge 1 + 2n$ for all $n \ge 1$

BASE CASE: ≠(1): 3' 21+2

INDUCTIVE STEP:

Assume P(k) is true. Show that P(k+1) is also true. If $3^{k} \ge 1+2k$ then $3^{k+1} \ge 1+2(k+1)$ $3^{k+1} \ge 2k+3$ Start with "if" $3(3^{k})\ge(1+2k)^{3}$ $3^{k+1}\ge 3+6k$ "small" side, replace $3^{k+1}>2k+3$ $3^{k+1}>2k+3$ $3^{k+1}>2k+3$ $5^{k+1}>2k+3$ $5^{k+1}>2k+3$ $5^{k+1}>2k+3$ $5^{k+1}>2k+3$ $k\ge 0$ $4k\ge 0$ $3+6k\ge 22k+3$ 2) Use mathematical induction to show that the statement is true for all natural numbers:

```
(1.25)^{n} > n \text{ for all } n \ge 11
Base Care: Show that P(11) is true.
P(11): (1.25)^{11} > 11
11.64 > 11 \text{ is true.}
Inductive Step: Assume P(k) is true. Show that P(k+1) is true.
IF (1.25)^{k} > k, \text{ then } 1.25^{k+1} > k+1
1.25 (1.25^{k}) > 1.25k
1.25^{k+1} > 1.25k
So, 1.25^{k+1} > k+1
25k \ge 1.25^{(11)} > 1
```