14.1

Notes MATHEMATICAL INDUCTION (AGAIN! AGAIN!)

Day 3

OBJECTIVES: 1) Use mathematical induction to prove a statement about factors.

[ WRITING A PROOF BY INDUCTION ]

A proof by mathematical induction that a proposition P(n) is true for every positive integer n consists of two
steps:

BASE CASE: Show that the proposition P(1) is true.

INDUCTIVE STEP: Assume that P(k) is true for an arbitrarily chosen positive integer k,
and show that under that assumption, P(k+1) must be true.

From these two steps we conclude (by the principle of mathematical induction) that for all positive integers n,
P(n) is true.

PROVING A STATEMENT ABOUT FACTORS '

1) Use mathematical induction to show that the statement is true for all natural numbers:
23" —1 is divisible by 11
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2) Use mathematical induction to show that the statement is true for all natural numbers:
2*" —1 is divisible by 3
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