ARITHMETIC SEQUENCES AND SERIES

OBJECTIVES: 1) Find a specific term/common difference in an arithmetic sequence.
2) Find the partial sum of an arithmetic sequence.

ARITHMETIC SEQUENCE: (ARITHMETIC PROGRESSION)

Sequence in which to move from one term to the next, you add the same constant for each successive term. i.e., the same number is ADDED to each previous term

Examples: 2, 5, 8, 11, 14, .. and 7, 3, $-1,-5, \ldots \quad \mathrm{~d}=$ common difference

$$
d=3 \quad d=-4
$$

THE NTH TERM OF AN ARITHMETIC SEQUENCE
 $$
a_{n}=a_{1}+(n-1) d
$$

1) Find the $40^{\text {th }}$ term of $7,12,17, \ldots \quad d=5$

$$
a_{40}=7+(40-1)(5) \quad a_{40}=7+(39) 5=202
$$

2) Determine which term a specific number is in an arithmetic sequence.
b) -60 when $a_{1}=17$ and $\mathrm{d}=-11$

$$
\begin{aligned}
& \begin{array}{c|}
a_{n}=101=5+(n-1) 3 \\
101=5+3 n-3
\end{array} \quad \begin{array}{l}
101 \text { is the } \\
33 r d \text { term }
\end{array} \\
& 99=3 n \quad n=33 \\
& \begin{array}{l}
a_{n}=-60 \\
-60=17+(n-1) \cdot-11 \\
-60=17-11 n+11 \quad n=8 \\
-88=-11 n \quad
\end{array} \\
& -88=-11 n
\end{aligned}
$$

$a_{n}=-9+(n-1) \cdot 7$

$$
\begin{aligned}
6 d & =42 \\
d & =7 \quad a_{1}=-9
\end{aligned}
$$

4) $a=3, d=2$; Find the $75^{\text {th }}$ term.
b) Find the indicated term: $\frac{2}{5}, \frac{4}{5}, \frac{6}{5}, \frac{8}{5}, \ldots, a_{30}$

$$
\begin{aligned}
& a=3 \quad d=2 \quad n=75 \\
& a_{75}=3+2(75-1) \\
&=3+2(74) \\
&=151
\end{aligned}
$$

$$
\begin{aligned}
d & =\frac{2}{5} \\
a_{30} & =\frac{2}{5}+\frac{2}{5}(30-1) \\
a_{30} & =\frac{2}{5}+\frac{2}{5}(2 a) \quad a_{30}=12
\end{aligned}
$$

5) Find the common difference in an arithmetic sequence with $a_{10}-a_{20}=70$.

$$
\begin{array}{ccc}
a_{10}-a_{20}=70 & a_{1}-9 d=a_{10} & a_{10}-a_{20}=70 \\
a_{10}=a_{1}-(10-1) d & a_{1}-19 d=a_{20} & \left(a_{1}-9 d\right)-\left(a_{1}-19 d\right)=70 \\
a_{20}=a_{1}-(20-1) d & & 10 d=70 \\
d=70
\end{array}
$$

ARITHMETIC SERIES

A series is a sum of a sequence. We want to find the $n^{\text {th }}$ partial sum or the sum of the first n terms of the sequence. We will denote the $n^{\text {th }}$ partial sum as S_{n}.

Consider the arithmetic sequence: $1+2+3+4+\ldots+97+98+99+100$
How can we find the sum quickly? Add $1+100,2+99,3+98 \ldots$ etc
How many pairs of numbers are there? 50
How many terms? 100
What do the pairs add up to? 101

$$
50(101)=5050
$$

$$
S_{n}=\frac{100}{2}(101)
$$

PARTIAL SUM OF ARITHMETIC SERIES

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \text { or } S_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right) \quad \text { or } \quad S_{n}=\frac{n}{2}\left(2 a_{1}+(n-1) d\right)
$$

6) Find the sum of the first 50 terms with first $=-8$ and 50 th $=139$.

$$
\begin{aligned}
& S_{n}=50\left(\frac{-8+139}{2}\right) \\
& S_{n}=\frac{50(131)}{2}=3,275
\end{aligned}
$$

7) The 5th and 50th terms of an arithmetic sequence are 3 and 30 respectively. Find the sum of the first 10 .

$$
\left.\left.\begin{array}{rlrl}
a_{5} & =3 \quad a_{50}=30 & \text { Find } S_{10} & \\
a_{50} & =30=a_{1}+(50-1) d & a_{1}+49 d=30 \\
a_{5} & =3=a_{1}+(5-1) d & a_{10}+4 d=3
\end{array}\right\} \quad \begin{array}{rl}
& =.6+(10-1) \frac{27}{45} \\
& \\
& =.6+9\left(\frac{27}{45}\right) \\
\text { 8) Find } \sum_{n=5}^{100}(2 n-1) & \\
& =6
\end{array}\right)
$$

Find the sum of the $5^{\text {th }}$ through the $100^{\text {th }}$ terms.

$$
\begin{aligned}
a_{5}= & 2(5)-1 \quad a_{100}=2(100)-1 \\
& =9 \\
& =199 \\
S= & 96\left(\frac{9+199}{2}\right)=9984 \\
& \\
& (\text { There are } 96 \text { terms between } n=5 ; n=100 .
\end{aligned}
$$

