GEOMETRIC SEQUENCES AND SERIES

OBJECTIVES: 1) Find a specific term/common ratio in a geometric sequence.
2) Find the sum of finite or infinite geometric series.

GEOMETRIC SEQUENCE: (GEOMETRIC PROGRESSION)

Sequence in which to move from one term to the next, you multiply by the same value for each successive term. i.e., the same number is MULTIPLIED to each previous term. A geometric sequence is an exponential function.
Examples: $1,2,4,8,16, \ldots$ and $81,-27,9,-3,1,-1 / 3, \ldots \quad r=$ common ratio

$$
r=2 \quad r=-\frac{1}{3}
$$

THE NTH TERM OF A GEOMETRIC SEQUENCE

$$
a_{n}=a_{1} \bullet r^{n-1}
$$

1) Find the $16^{\text {th }}$ term of $1,-\sqrt{2}, 2, \ldots$

$$
r=-\sqrt{2}
$$

$$
a_{16}=1 \cdot(-\sqrt{2})^{15}
$$

$$
a_{16}=-2^{15 / 2}
$$

2) Find the $30^{\text {th }}$ term of $2,-4,8, \ldots$

$$
r=-2
$$

$$
\begin{aligned}
& a_{30}=2 \cdot(-2)^{2 a} \\
& a_{30}=-2^{30}
\end{aligned}
$$

3) Find the $5^{\text {th }}$ term of a geometric sequence if the $4^{\text {th }}$ term is 4 and the $6^{\text {th }}$ term is 6 .

$$
\begin{aligned}
a_{4}=4 \quad a_{6} & =6 \quad a_{n}
\end{aligned}=a_{1} \cdot r^{n-1} \quad \begin{aligned}
4 & a_{1}=\frac{4}{r^{3}} \\
6 & =a_{1} \cdot r^{5} \\
\therefore 6 & =\frac{4}{r^{3}} \cdot r^{5} \\
6 & =4 r^{2}
\end{aligned} \quad \begin{array}{r}
r= \pm \sqrt{\frac{3}{2}} \text { term: } \\
4 \sqrt{\frac{3}{2}} \text { or }-4 \sqrt{\frac{3}{2}}
\end{array}
$$

4) If the fourth term in a geometric sequence is $\frac{4}{3}$ and the $7^{\text {th }}$ term is $\frac{32}{81}$ find the first term.

$$
\begin{array}{lll}
a_{4}=\frac{4}{3} a_{7}=\frac{32}{81} \\
\frac{4}{3}=a_{1} \cdot r^{3} & \frac{32}{81}=\frac{4}{3} r^{3} & a_{1}=\frac{4}{3 r^{3}} \\
\frac{32}{81}=a_{1} \cdot r^{6}
\end{array} \quad \frac{3}{27}=r^{3} \quad a_{1}=\frac{4}{3\left(\frac{2}{3}\right)^{3}}
$$

PARTIAL SUM OF A GEOMETRIC SERIES: $S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$ (sum of a finite series)
Find the indicated sum.
5) S_{5} for $1+2+4+\ldots$

$$
\begin{array}{r}
S_{5}=\frac{1\left(1-2^{5}\right)}{1-2}=\frac{1(-31)}{-1}=31 \quad \begin{array}{l}
S_{6}=10\left(\frac{1-\left(\frac{4}{5}\right)^{6}}{1-\frac{4}{5}}\right) \\
\\
10 \cdot \frac{5}{1}\left(1-\left(\frac{4}{5}\right)^{6}\right)=50-\frac{4}{5}
\end{array} \quad \begin{array}{l}
\frac{4}{5^{6}}
\end{array}
\end{array}
$$

6) S_{6} with $a_{1}=10$ and $a_{2}=8$
7) Find the sum of the first 5 terms. $-\frac{1}{2}, \frac{3}{10},-\frac{9}{50}, \ldots$
8) Find $\sum_{k=1}^{6}\left(\frac{2}{3}\right)^{k+1} \quad a_{1}=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$

$$
\begin{aligned}
& r=\frac{-3}{5} \\
& S_{5}=-\frac{1}{2}\left(\frac{1-\left(-\frac{3}{5}\right)^{5}}{1+3 / 5}\right)=-\frac{1}{2}\left(\frac{1+\frac{35}{55}}{\frac{8}{5}}\right) \\
&=\frac{-5}{16}\left(1+\frac{243}{3125}\right) \\
&=\frac{-421}{1250}
\end{aligned}
$$

$$
S_{6}=\frac{4}{9}\left(\frac{1-\left(\frac{2}{3}\right)^{6}}{1-2 / 3}\right)
$$

$$
=\frac{4}{9}\left(\frac{1-\frac{2^{6}}{3^{6}}}{\frac{1}{3}}\right)=\frac{2660}{2187}
$$

Special Case: If the common ratio is between -1 and 1 , an infinite geometric sequence has a finite sum.

SUM OF AN INFINITE GEOMETRIC SERIES: $s=\frac{a_{1}}{1-r}$

Find the sum of the infinite geometric series:
9) $1+\frac{2}{3}+\frac{4}{9}+\ldots$
10) $\sum_{k=1}^{\infty}\left(\frac{2}{3}\right)^{k+1}$
$S=\frac{1}{1-2 / 3}=\frac{1}{\frac{1}{3}}=3$

$$
S=\frac{\frac{4}{9}}{1-2 / 3}=\frac{4 / 9}{1 / 3}=\frac{4}{3}
$$

11) $1+\frac{1}{1.01}+\frac{1}{(1.01)^{2}}+\ldots \quad r=\frac{1}{101}$
12) $-1-\frac{1}{\sqrt{2}}-\frac{1}{2}-\ldots \quad r=\frac{1}{\sqrt{2}}$
$S=\frac{1}{1-\frac{1}{1.01}}=\frac{1}{\frac{1}{101}}=101$

$$
\begin{aligned}
& S=\frac{-1}{1-\frac{1}{\sqrt{2}}}=\frac{-1}{\frac{\sqrt{2}-1}{\sqrt{2}}}=\frac{-1}{\frac{\sqrt{2}-1}{\sqrt{2}}}=\frac{-\sqrt{2}}{\sqrt{2}-1} \\
& \frac{-\sqrt{2}}{\sqrt{2}-1} \cdot \frac{\sqrt{2}+1}{\sqrt{2}+1}=\frac{-2-\sqrt{2}}{2-1}=-2-\sqrt{2}
\end{aligned}
$$

