QUADRATIC EQUATIONS

OBJECTIVES:

Use the quadratic formula to find the roots of an equation.
 Compute the sum and product of the roots.

DEFINITION: ROOT

A function **root** is a solution to the equation, an x-intercept and the location where the function's graph crosses the x-axis.

THE PRODUCT AND SUM OF ROOTS THEOREM: For quadratics of the form $x^2 + bx + c = 0$, roots r_1 and r_2 have the following properties: $r_1 \bullet r_2 = c$ and $r_1 + r_2 = -b$

Examples:

1) Find a quadratic function with integer coefficients whose roots are $\frac{2-\sqrt{3}}{5}$ and $\frac{2+\sqrt{3}}{5}$. $r_1 + r_2 = -b$ or $-(r_1 + r_2) = b$ $C = \left(\frac{2-\sqrt{3}}{5}\right)\left(\frac{2+\sqrt{3}}{5}\right)$ $-b = \frac{2+\sqrt{3}}{5} + \frac{2-\sqrt{3}}{5}$ $C = \frac{4-3}{25} = \frac{1}{25}$ $b = \frac{4}{5}$ $b = -\frac{4}{5}$ $b = -\frac{4}{5}$ $y = x^2 - \frac{4}{5}x + \frac{1}{25}$ $y = 25x^2 - 20x + 1$

2) Find the product and sum of roots for each.

a. (x-2)(x+4) = 1 [Complete the square.]

b. $-5y^2 + 10y = -2$ [Use quadratic formula.]

$$x^{2} + 2x - \theta = 1$$
Sum:

$$x^{2} + 2x = 9$$

$$-1 + \sqrt{10} + (-1 - \sqrt{10})$$

$$x^{2} + 2x + 1 = 10$$

$$x^{2} + 2x + 1 = 10$$

$$(-2)$$

$$y = \frac{-10 \pm \sqrt{100 - 4(-5)(2)}}{2(-5)}$$

$$y = \frac{-10 \pm \sqrt{100 - 4(-5)(2)}}{-10}$$

$$y = \frac{-10 \pm \sqrt{140}}{-10}$$

$$y = -\frac{10 \pm \sqrt{140}}{-10}$$

$$y = -\frac{10 \pm \sqrt{140}}{-10}$$

$$y = -\frac{10 \pm 2\sqrt{35}}{-10}$$

$$\frac{25 - 35}{-5} = \frac{-2}{5}$$

2.1 Notes

DISCRIMINANT REVIEW

3) How many roots?
$$\frac{\sqrt{3}x^2}{6} + \frac{\sqrt{2}x}{3} - \frac{3}{4} = 0$$

Check:
$$b^2 - 4ac = \left(\frac{\sqrt{2}}{3}\right)^2 - 4\left(\frac{\sqrt{3}}{6}\right)\left(-\frac{3}{4}\right)$$
$$= \frac{2}{9} + \frac{\sqrt{3}}{2}$$

positive, \therefore 2 real roots

4) Find k such that there is exactly 1 root.

$$5x^{2} + (\sqrt{3}k)x + 4 = 0$$

If only 1 root, 5² - 4ac = 0
 $(\sqrt{3}k)^{2} - 4(5)(4) = 0$
 $3k - 80 = 0$
 $80 = k$
 3

5) Determine the number of real roots the equation has:

a)
$$x^{2} - 3x + 6 = 0$$

 $b^{2} - 4ac$
 $9 - 4(1)(b) = -number$
No real roots
 $b) -3x^{2} - x + 2 = 0$
 $b^{2} - 4ac$
 $(-1)^{2} - 4(-3)(2)$
 $1 + 24 = 25$
 $2 real roots$