1) Use the quadratic formula to find the roots of an equation.
2) Compute the sum and product of the roots.

DEFINITION: ROOT

A function root is a solution to the equation, an x-intercept and the location where the function's graph crosses the x-axis.

THE PRODUCT AND SUM OF ROOTS THEOREM:

$$
r_{1} \bullet r_{2}=c \quad \text { and } \quad r_{1}+r_{2}=-b
$$

Examples:

1) Find a quadratic function with integer coefficients whose roots are $\frac{2-\sqrt{3}}{5}$ and $\frac{2+\sqrt{3}}{5}$.

$$
\begin{array}{cc}
r_{1} \cdot r_{2}=c & r_{1}+r_{2}=-b \text { or } \quad-\left(r_{1}+r_{2}\right)=b \\
C=\left(\frac{2-\sqrt{3}}{5}\right)\left(\frac{2+\sqrt{3}}{5}\right) & -b=\frac{2+\sqrt{3}}{5}+\frac{2-\sqrt{3}}{5} \\
c=\frac{4-3}{25}=\frac{1}{25} & -b=\frac{4}{5} \quad b=-\frac{4}{5} \\
y=x^{2}-\frac{4}{5} x+\frac{1}{25} \quad \rightarrow \text { we need integer coefficients, so multiply by } 25 \\
y=25 x^{2}-20 x+1
\end{array}
$$

2) Find the product and sum of roots for each.
a. $(x-2)(x+4)=1$ [Complete the square.]
b. $-5 y^{2}+10 y=-2$ [Use quadratic formula.]

$$
\begin{array}{cccc}
x^{2}+2 x-8=1 & \text { Sum: } & -5 y^{2}+10 y+2=0 & \text { Sum: } \\
x^{2}+2 x=9 & -1+\sqrt{10}+(-1-\sqrt{10}) & y=\frac{-10 \pm \sqrt{100-4(-5)(2)}}{2(-5)} & \left(\frac{5+\sqrt{35})}{5}\right)+\left(\frac{5-\sqrt{30})}{5}\right. \\
x^{2}+2 x+1=10 & -2 & 2 \\
(x+1)^{2}=10 & \text { Product: } & y=\frac{-10 \pm \sqrt{140}}{-10} & \text { Product: } \\
x=-1 \pm \sqrt{10} & (-1+\sqrt{10})(-1-\sqrt{10}) & 1-10 & \left(\frac{5+\sqrt{33})\left(\frac{5-\sqrt{35})}{5}\right)}{}\right. \\
& -9 & y=\frac{-10 \pm 2 \sqrt{35}}{-10} & \frac{25-35}{25}=\frac{-2}{5}
\end{array}
$$

DISCRIMINANT REVIEW

3) How many roots? $\frac{\sqrt{3} x^{2}}{6}+\frac{\sqrt{2} x}{3}-\frac{3}{4}=0$

Check:

$$
\begin{aligned}
b^{2}-4 a c & =\left(\frac{\sqrt{2}}{3}\right)^{2}-4\left(\frac{\sqrt{3}}{6}\right)\left(-\frac{3}{4}\right) \\
& =\underbrace{\frac{2}{9}+\frac{\sqrt{3}}{2}}_{\text {positive, } \therefore 2 \text { real roots }}
\end{aligned}
$$

4) Find k such that there is exactly 1 root.

$$
\begin{aligned}
& 5 x^{2}+(\sqrt{3 k}) x+4=0 \\
& \text { If only I root, } b^{2}-4 a c=0 \\
& (\sqrt{3 k})^{2}-4(5)(4)=0 \\
& 3 k-80=0 \\
& \frac{80}{3}=k
\end{aligned}
$$

5) Determine the number of real roots the equation has:
a) $x^{2}-3 x+6=0$
b) $-3 x^{2}-x+2=0$
$b^{2}-4 a c$
$9-4(1)(6)=-$ number
No real roots

$$
\begin{array}{l|}
(-1)^{2}-4(-3)(2) \\
1+24=25
\end{array} \begin{array}{|}
2 \text { real } \\
\text { roots }
\end{array}
$$

