1) Solve absolute value and radical equations and equations using $n^{\text {th }}$ roots.
2) Solve equations of quadratic type.

REVIEW

When is $|x-4|$ rewritten as $x-4$ and when is $|x-4|$ rewritten as $-(x-4) ?$

$$
\begin{aligned}
& |x-4| \text { is } x-4 \text { if } x-4 \geq 0 \text { (in other words, if inside is positive or zero) } \\
& \text { and is }-(x-4) \text { if } x-4<0 \text { (in other words, if inside is negative) }
\end{aligned}
$$

ABSOLUTE VALUE EQUATIONS

1) Solve $|5 x-3|=12$

If $5 x-3$ is positive, then: If $5 x-3$ is neg. then:
2) $\left|x^{2}+5 x\right|=|3 x+16|$

$$
\begin{array}{cc}
5 x-3=12 & -(5 x-3)=12 \\
5 x=15 & -5 x+3=12 \\
x=3 & -5 x=9 \\
& x=-9 / 5
\end{array}
$$

3) Solve $|5 x-3|=-12$

No solution!
Abs. value of $5 x-3$ must be positive!

USING $N^{\text {TH }}$ ROOTS TO SOLVE EQUATIONS

$\underline{n}^{\text {th }}$ roots

If n is even then possibly 2 answers (or 1 or none).
If n is odd, always 1 solution.
2) $(x-1)^{4}=7$

$$
\sqrt[4]{(x-1)^{4}}=\sqrt[4]{7}
$$

$$
x-1= \pm \sqrt[4]{7}
$$

$$
x=1 \pm \sqrt[4]{7}
$$

3) $(x-1)^{4}=-7$
$\sqrt[4]{(x-1)^{4}}=\sqrt[4]{-7}$
$x-1= \pm \sqrt[4]{-7}$ notreal!
no real
solutions
4) $3(x-1)^{5}=-48$

$$
(x-1)^{5}=-16
$$

$$
\sqrt[5]{(x-1)^{5}}=\sqrt[5]{-16}
$$

$$
x-1=5 \sqrt{-16}
$$

 here
5) $\sqrt{2 y-3}-\sqrt{3 y+3}+\sqrt{3 y-2}=0$

$$
\begin{aligned}
& \sqrt{2 y-3}-\sqrt{3 y+3}+\sqrt{3 y-2}=0 \\
& \left.(\sqrt{2 y-3}+\sqrt{3 y-2})^{2}=(\sqrt{3 y+3})^{2} \begin{array}{r}
(\text { isolates } \\
\text { squariboth } \\
\text { sides }
\end{array}\right)
\end{aligned}
$$

$$
6 y^{2}-4 y-9 y+6=y^{2}-8 y+16
$$

Solution: $y=2$

$$
5 y^{2}-5 y-10=0
$$

$$
2 y-3+2 \sqrt{(2 y-3)(3 y-2)}+3 y-2=3 y+3
$$

$$
5\left(y^{2}-y-2\right)=0
$$

$$
\begin{aligned}
& -3+2 \sqrt{(2 y-3)(3 y-2)}+3 y-2=3 y+3 \\
& 2 \sqrt{(2 y-3)(3 y-2)}=-2 y+8 \text { (simplify) }
\end{aligned} \quad 5(y-2)(y+1)=0
$$

$$
5(y-2)(y+1)=0 \quad y=2
$$

$$
(2 y-3)(3 y-2)=y^{2}-8 y+16\left(\text { simplify left } \begin{array}{c}
\text { side }
\end{array}\right)
$$

$$
\begin{gathered}
1-3+2=0 \\
0=0
\end{gathered}
$$

$$
\xrightarrow[\text { extraneous! }]{\frac{1-1}{\sqrt{2(1)-3}}-\sqrt{3(1)+3}+\sqrt{3(1)-2}}=0
$$

SOLVING EQUATIONS OF QUADRATIC TYPE

One exponent will be double the other and you will have a constant term.
7) $x^{4}-x^{2}=12$

$$
\text { 9) } x^{4}-8 x^{2}+8=0
$$

let $x^{2}=t$

$$
\begin{aligned}
& t^{2}-t=12 \\
& t^{2}-t-12=0 \\
& (t-4)(t+3)=0 \quad\{ \pm 2\} \\
& t=4 \quad t=-3 \\
& t=x^{2} \\
& x^{2}=4 \quad x^{2}=-3 \\
& x= \pm 2 \quad \text { not real }
\end{aligned}
$$

10) $3 x^{\frac{8}{5}}-5 x^{\frac{4}{5}}-12=0$
let $t=x^{4 / 5}$
$3 t^{2}-5 t-12=0$

$$
3 t^{2}-9 t+4 t-12=0
$$

$$
\begin{aligned}
& \text { Solution: } \\
& x= \pm \sqrt[4]{3^{5}}
\end{aligned}
$$

let $t=x^{2}$ not factorable!
$t=\frac{t^{2}-8 t+8=0}{2(1)}$
$t=\frac{8 \pm \sqrt{64-32}}{2}$
$t=\frac{8 \pm \sqrt{32}}{2} \quad \begin{aligned} & t=\frac{8 \pm 4 \sqrt{2}}{2} \\ & t=4 \pm 2 \sqrt{2} \\ & t=x^{2}, \text { substitution } \\ & x^{2}=4 \pm 2 \sqrt{2} \\ & x= \pm \sqrt{4 \pm 2 \sqrt{2}}\end{aligned}$
$x=\sqrt{4+2 \sqrt{2}}, \sqrt{4-2 \sqrt{2}},-\sqrt{4+2 \sqrt{2}},-\sqrt{4-2 \sqrt{2}}$
11) $6 x^{-2}-x^{-1}-2=0$

$$
\text { let } t=x^{-1}
$$

$$
\begin{aligned}
& 6 t^{2}-t-2=0 \\
& 6 t^{2}-4 t+3 t-2=0
\end{aligned}
$$

$$
3 t(t-3)+4(t-3)=0
$$

$$
2 t(3 t-2)+1(3 t-2)=0
$$

$$
(3 t+4)(t-3)=0
$$

$$
(2 t+1)(3 t-2)=0
$$

$$
t=\frac{-4}{3} \quad t=3
$$

$$
t=-\frac{1}{2} \quad t=2 / 3
$$

Solution:

$$
x=-2,3 / 2
$$

subst. $x^{4 / 5}=t$
$\left(x^{4 / 5}\right)^{5 / 4}=\left(-\frac{4}{3}\right)^{5 / 4} \quad\left(x^{4 / 5}\right)^{5 / 4}=(3)^{5 / 4}$
$\left(x=\sqrt[4]{\left(-\frac{4}{3}\right)^{5}} \quad x= \pm \sqrt[4]{3^{5}}\right.$
$\begin{aligned} & \text { This } \\ & \text { raise } \\ & \text { to recipe. } \\ & \begin{array}{l}\text { Rover }\end{array} \\ & \text { Not real! }\end{aligned} \quad \begin{aligned} & \text { real } \\ & \text { solutions? }\end{aligned}$
subset: $t=x^{-1}$

$$
\begin{array}{ll}
x^{-1}=\frac{-1}{2} & x^{-1}=\frac{2}{3} \\
\frac{1}{x}=-\frac{1}{2} & \frac{1}{x}=\frac{2}{3} \\
x=-2 & x=\frac{3}{2}
\end{array}
$$

