OBJECTIVES:

1) Solve polynomial inequalities using a graphical approach.
2) Solve rational expression inequalities.

SOLVING INEQUALITIES: USING A GRAPHICAL APPROACH

1) $x^{2}-2 x-3<0$
2) $x^{2}-2 x-3 \geq 0$
$(-1,3)$

$$
(-\infty,-1] \cup[3, \infty)
$$

SOLVING INEQUALITIES: WITHOUT A GRAPH

KEY NUMBERS: Roots and

 restrictions on domain3) $x^{4} \leq 14 x^{3}-48 x^{2}$

$$
\begin{aligned}
& x^{4}-14 x^{3}+48 x^{2} \leq 0 \\
& x^{2}\left(x^{2}-14 x+48\right) \leq 0 \\
& x^{2}(x-6)(x-8) \leq 0 \\
& x=0 \quad x=6 \quad x=8\} \text { KEY \#!! }
\end{aligned}
$$

$$
x^{2}(x-6)(x-8)
$$

$$
(-\infty, 0) \rightarrow \text { test }
$$

$$
(+)(-)(-)=(+)
$$

$$
(0,6):(+)(-)(-)=(t)
$$

$$
(6,8):(+)(+)(-)=(-)
$$

$$
\text { 4) } x^{3}-2 x^{2}-3 x>0
$$

Solution:

$$
(6,8) \cup\{0\}
$$

$$
x\left(x^{2}-2 x-3\right)>0
$$

$$
\text { Test: } \quad x(x-3)(x+1)
$$

$$
(-\infty,-1):(-)(-)(-)=(-)
$$

$$
x(x-3)(x+1)>0 \quad(-10):(-)(-)(t)=(t)
$$

$$
(-1,0):(-)(-)(+)=(t) \quad \text { Polynomial is }>0 \text { at }
$$

$$
x=0,3,-1 \text { key } \#_{s}
$$

$$
(0,3):(+)(-)(+)=(-)
$$

$$
\stackrel{(-\infty,-1)(-1,0)(0,3)(3, \infty)}{\longleftrightarrow}
$$

$$
(3, \infty):(+)(+)(+)=(+)
$$

$$
\stackrel{1}{(-)} \begin{array}{ccc}
-1 & 1 & 1 \\
\stackrel{1}{0}(-)^{3}(+)
\end{array}
$$

RATIONAL EXPRESSION INEQUALITIES:

5) $\frac{x+2}{x-4} \geq 0 \quad$ Test: $\frac{x+2}{x-4}$

6) $\frac{1}{x-2}-\frac{1}{x-1} \geq \frac{1}{6} \quad \begin{aligned} & \text { You may want to mut. by }(x-2)(x-1) \text {, but } \\ & \text { we don't know if it is a pos/neg. value! }\end{aligned}$

$$
\begin{array}{ll}
\frac{1}{x-2}-\frac{1}{x-1}-\frac{1}{6} \geq 0 \\
\frac{6(x-1)-6(x-2)-(x-2)(x-1) \geq 0}{6(x-2)(x-1)} & \frac{-(x-4)(x+1)}{6(x-2)(x-1)} \geq 0
\end{array}
$$

EST:

