Section 3.1

Find the domain of the function:

1. $y=\sqrt{\frac{2 x-3}{3 x+2}} \quad$ D: $\left(-\infty, \frac{-2}{3}\right) \cup\left[\frac{3}{2}, \infty\right)$
$\frac{2 x-3}{3 x+2} \geq 0$

$$
\text { Test: }\left(-\infty,-\frac{2}{3}\right): \frac{}{-}=+
$$

$(-2 / 3,3 / 2)=\frac{-}{t}=-$
$(3 / 2, \infty)=\frac{t}{t}=+$

Find the range of the function:
2. $f(x)=\sqrt{2 x^{3}-5}$
$y=\sqrt{2 x^{3}-5}$
$y^{2}=2 x^{3}-5$
$\sqrt[3]{\frac{x^{2}+5}{2}}=x$
\uparrow
This will always be positive!
4. If $f(x)=2 x-4$, solve for x if $f(x+1)=f\left(\frac{1}{x}\right)$

$$
\begin{array}{ll}
2(x+1)-4=2\left(\frac{1}{x}\right)-4 \\
2 x+2-4=\frac{2}{x}-4 & 2\left(x^{2}+x-1\right)=0 \\
2 x+2=\frac{2}{x} & \frac{-1 \pm \sqrt{1^{2}-4(1)(-1)}}{2(1)}=x \\
2 x^{2}+2 x-2=0 & \frac{-1 \pm \sqrt{5}}{2}=x
\end{array}
$$

Section 3.2 and 3.3

5) Given $f(x)=\left\{\begin{array}{ccc}-x^{2} & \text { if } & -2 \leq x<4 \\ |x| & \text { if } & x \geq 4\end{array}\right.$, find the average rate of change on the interval $[-1,4]$.

$$
\begin{array}{ll}
f(-1)=-1 & (-1,-1) \\
f(4)=4 & (4,4)
\end{array}
$$

$$
\frac{4--1}{4--1}=\frac{5}{5}=1
$$

6) Find $\frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{2}-x+2$.

$$
\begin{aligned}
& \frac{(x+h)^{2}-(x+h)+2-\left(x^{2}-x+2\right)}{h} \\
& \frac{x^{2}+2 x h+h^{2}-x-h+2-x^{2}+x-2}{2}=\frac{2 x h+h^{2}-h}{h}=2 x+h-1
\end{aligned}
$$

Section 3.4

7) Graph using translations. A sketch is fine!
a) $y=3(x-1)^{3}-1$

b) $y=\frac{1}{x+6}-1$
c) $y=|x-6|$
d) $y=\left|x^{3}-2\right|$

8) If $(3,6)$ is on the graph of $f(x)$, find the coordinates of the point on the graph of $-2 f(2-x)-4$

$$
(3,6) \quad(3,-12)
$$

$$
(-3,-12) \quad(-1,-16)
$$

Section 3.5

9) If $f(x)=x^{2}+3$ and $g(x)=\sqrt{x}$ find $(f \circ g)(3)$. Also, find the domain of $(f \circ g)(x)$.

$$
\begin{aligned}
& f(g(3))=f(\sqrt{3})=6 \\
& f(g(x))=\sqrt{x}^{2}+3=x+3 \\
& \text { Domain is }[0, \infty)
\end{aligned}
$$

10) Express $h(x)=\sqrt[4]{9+5 x}$ as a composition of two simpler functions f and g, in two different ways.

$$
\begin{array}{ll}
f(x)=\sqrt[4]{x} & f(x)=5 x \\
g(x)=5 x+9 & g(x)=\sqrt[4]{9+x}
\end{array}
$$

Section 3.6

11) Find the inverse of $f(x)=3 x^{3}-1$. Then prove that they are inverses.

$$
\begin{array}{rlrl}
y=3 x^{3}-1 & f(g(x)) & =3\left(\sqrt[3]{\frac{x+1}{3}}\right)^{3}-1 \\
x=3 y^{3}-1 & & =3\left(\frac{x+1}{3}\right)-1 \\
\sqrt[3]{\frac{x+1}{3}}=y & & =x+1-1 \\
& =x
\end{array}
$$

$$
g(f(x))=\sqrt[3]{\frac{3 x^{3}-1+1}{3}}
$$

$$
g(f(x))=\sqrt[3]{\frac{3 x^{3}}{3}}
$$

12) If $f(x)=-(x+2)^{3}-4$, find $f\left(f^{-1}(f(-2))\right)$.

$$
f(-2)=-4
$$

