GRAPHS OF FUNCTIONS

OBJECTIVES:

1) Graph functions and piecewise functions.
2) Memorize the six basic functions and their graphs.

THE SIX BASIC GRAPHS:

(a) The absolute value function $y=|x|$
Domain: $(-\infty, \infty)$
Range: $[0, \infty)$

(b) The squaring function $y=x^{2}$
Domain: $(-\infty, \infty)$
Range: $[0, \infty)$

MEMORIZE:

1) Name
2) Equations
3) At least two points
4) Domain
5) Range

(c) The cubing function
$y=x^{3}$
Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$

(d) The reciprocal function $y=1 / x$
$y=1 / x$
Domain: $(-\infty, 0) \cup(0, \infty)$
Range: $(-\infty, 0) \cup(0, \infty)$

(e) The square root function $y=\sqrt{x}$
Domain: $[0, \infty)$
Range: $[0, \infty)$

(f) The semicircle function $y=\sqrt{1-x^{2}}$
Domain: $[-1,1]$
Range: $[0,1]$

VERTICAL LINE TEST

Fiction

not a function

FUNCTION OR NOT?

Function

Not a function

function

PIECEWISE FUNCTIONS

Find: $f(1) \quad f(1)=-3$
$f(4) \quad f(4)=0$
x when $f(x)$ is $-2 \quad x=-2,2$
Domain: $(-\infty,-4) \cup[-2, \infty)$
Range: $[-4,-2] \cup\{2\} \cup(5, \infty)$
Define the function: If $x<-4, f(x)=2$

$$
\begin{aligned}
& \text { If } \quad-2 \leq x \leq 4, f(x)=|x|-4 \\
& \text { If } \quad x>4, f(x)=(x-4)^{2}+5
\end{aligned}
$$

Find the domain and range of each function:

$D:(-\infty, 0] \cup(7, \infty)$
$R:(-1, \infty)$

$D:(-\infty, \infty)$
$R:[-3, \infty)$

D: $(-\infty, \infty)$
$R:(-\infty, a] \cup(k, \infty)$

Graph the piecewise function and find the range.
$f(x)=\left\{\begin{array}{ccc}-x^{3} & \text { if } & -2 \leq x<2 \\ |x| & \text { if } & x \geq 2\end{array}\right.$
$f(-2)=-(-2)^{3}=8$
$R:(-8,00)$
$f(0)=-(0)^{3}=0$
$f(2)=-(2)^{3}=-8$ opencircle
$f(2)=|2|=2$
$f(3)=|3|=3$

