## 3.3 SHAPES OF GRAPHS. AVERAGE RATE OF CHANGE

Notes

## OBJECTIVES:

1) Find the average rate of change of a function.

Turning Point - Graph changes from rising to falling or vice versa. $P, Q, R$

Maximum - Graph's highest point. S
Minimum - Graph's lowest point. $R$
Increasing - Upward trend $(Q$ to $R)(3,5)$
Decreasing - Downward trend $(R$ to $S)(5,12)$


## FINDING MAX/MINS

1) Find max or min and increasing/decreasing trends for $f(x)=x^{4}-3 x$. min: (.909,-2.04) decreasing: $(-\infty, .909)$


AVERAGE RATE OF CHANGE: $\frac{\text { change in } \mathrm{y}}{\text { change in } \mathrm{x}}=\frac{f(b)-f(a)}{b-a}$

2) Find the average rate of change for $y=x^{3}$ on:
a) $[-3,0]$
b) $[0,1]$
c) $[1,3]$
$f(-3)=-27 \quad(-3,-27) f(0)=0 \quad(0,0) \quad f(1)=1 \quad(1,1)$
$f(0)=0 \quad(0,0) \quad f(1)=1 \quad(1,1)$
$\frac{-27-0}{-3-0}=9 \quad \frac{0-1}{0-1}=1 \quad \frac{27-1}{3-1}=\frac{26}{2}=13$
3) Suppose you fell off the Sears Tower... and your position is given by the function $s(t)=-16 t^{2}$ where $t=$ time and $s=$ distance. What is your average speed between 3 and 6 seconds?

$$
\begin{aligned}
& s(3)=-16.9=-144 \quad(3,-144) \\
& s(6)=-16.6^{2}=-576 \quad(6,-576) \\
& \frac{-576+144}{6-3}=\frac{-432}{3}=-144
\end{aligned}
$$



3 WAYS OF SAYING THE SAME THING: (AVERAGE RATE OF CHANGE)
4) Find $\frac{f(x+h)-f(x)}{h}$ for $f(x)=3 x^{2}-5 x$.
5) If $d(t)=-9.8 t^{2}$ find the average velocity over $[1,1+\mathrm{h}]$.

$$
\begin{gathered}
\frac{3(x+h)^{2}-5(x+h)-\left(3 x^{2}-5 x\right)}{h} \\
\frac{3 x^{2}+6 x h+3 h^{2}-5 / x-5 h-3 x^{2}+5 / x}{h} \\
\frac{6 x h+3 h^{2}-5 h}{h} \\
\frac{h(6 x+3 h-5)}{h} \sqrt[6 x+3 h-5]{h}
\end{gathered}
$$

$$
\begin{aligned}
& d(1)=-9.8(1)^{2}=-9.8 \\
& d(1+h)=-9.8(1+h)^{2}=-9.8\left(1^{2}+2 h+h^{2}\right) \\
& \frac{(1 .-9.8)\left(1+h,-9.8-18.6 h-9.8 h^{2}\right)}{(1+h)-1} \\
& \frac{-18.6 h-9.8 h^{2}}{h}=\frac{-h(18.6+9.8 h)}{h} \\
& \frac{-(18.6+9.8 h) \mathrm{ft} / \mathrm{sec}}{\left(-9.8 h^{2}-(-9.8)\right.}
\end{aligned}
$$

6) Find $\frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{2}-5 x+1$.
7) Find $\frac{f(x)-f(a)}{x-a}$ for $f(x)=\frac{1}{3 x}$.

$$
\begin{aligned}
& \frac{(x+h)^{2}-5(x+h)+1-\left(x^{2}-5 x+1\right)}{h} \\
& \frac{x^{2}+2 x h+h^{2}-5 x-5 h+1-x^{2}+5 x-1}{h} \\
& \frac{2 x h+h^{2}-5 h}{h} \\
& \frac{2 x+h-5}{h}
\end{aligned}
$$

$$
\frac{\frac{1}{3 x}-\frac{1}{3 a}}{x-a}
$$

$$
\frac{\frac{a-x}{3 a x}}{x-a}
$$

$$
\frac{a-x}{3 a x} \cdot \frac{1}{x-a}
$$

$$
\frac{-(x f a)}{3 a x} \cdot \frac{1}{x-a}=-\frac{1}{3 a x}
$$

