OBJECTIVES: 1) Combine functions arithmetically.
2) Find the composition of two functions.

RULES:

- Sum: $\quad(f+g)(x)=f(x)+g(x)$
- Difference: $(f-g)(x)=f(x)-g(x)$
- Product: $(f g)(x)=f(x) \bullet g(x)$
- Quotient: $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$

If $f(x)=2 x+5$ and $g(x)=x-1$ find:

1) $(f+g)(x)$
$f(x)+g(x)=2 x+5+x-1$

$$
3 x+4
$$

2) $(f-g)(x)$

$$
\begin{aligned}
& f(x)-g(x) \\
& 2 x+5-(x-1)
\end{aligned}
$$

$$
x+6
$$

4) $\left(\frac{f}{g}\right)(x)$

$$
\frac{f(x)}{g(x)}=\frac{2 x+5}{x-1}
$$

COMPOSITION: Use the output from one function as the input for another.

$$
(f \circ g)(x)=f(g(x))
$$

If $f(x)=x+2$ and $g(x)=x-1$ find:
5) $(f \circ g)(3)$
6) $(g \circ f)(3)$

$$
f(g(3))
$$

Find $g(3): g(3)=3-1=2$

$$
\begin{gathered}
f(2)=2+2=4 \\
f(g(3))=4
\end{gathered}
$$

8) $(f \circ g)(x)$

$$
\begin{array}{r}
f(g(x))=f(x-1)=x-1+2 \\
x+1
\end{array}
$$

To simplify: 1) Plug $x$ into $g$.
2) Use the result from step 1 in $f$.
7) $(f \circ f)(3)$

$$
f(f(3))=f(5)=7
$$

DOMAIN OF A COMPOSITION FUNCTION: Finding the domain of $(f \circ g)(x)=f(g(x))$
10) Find the domain of $(f \circ g)(x)$ if $f(x)=x^{2}+1$ and $g(x) \bar{\approx} \sqrt{x}$

$$
\begin{aligned}
& f(g(x))=(x)^{2}+1 \\
& f(g(x))=(\sqrt{x})^{2}+1 \\
& f(g(x))=x+1
\end{aligned}
$$

$$
x \geq 0 \rightarrow
$$

$$
D:[0, \infty)
$$

suggests $\mathbb{R}$, BUT the inputs must also be the inputs (within the domain) of $g(x)$
11) Find the domain of $(f \circ g)(x)$ if $f(x)=\frac{3 x-4}{3 x+3}$ and $g(x)=\frac{x+1}{x-1}$

$$
\begin{array}{r}
f(g(x))=\frac{3\left(\frac{x+1}{x-1}\right)-4}{3\left(\frac{x+1}{x-1}\right)+3}=\frac{(x-1)}{(x-1)}=\frac{3(x+1)-4(x-1)}{3(x+1)+3(x-1)}=\frac{-x+7}{6 x} \\
\text { Domain: } \mathbb{R} \rightarrow \text { but not } 0 \\
\text { And also not } 1!(1, \infty)
\end{array}
$$

DECOMPOSING FUNCTIONS

1) Express $m(x)=\left(x^{2}+2\right)^{3}$ as a composition of two simpler functions $f$ and $g$, in two different ways.

$$
\begin{array}{lll}
f(x)=x^{3} & \text { or } & f(x)=(x+2)^{3} \\
g(x)=x^{2}+2 & g(x)=x^{2}
\end{array}
$$

2) Express $h(x)=\sqrt[3]{3-x^{2}}$ as a composition of two simpler functions $f$ and $g$, in two different ways.

$$
\begin{array}{lll}
f(x)=\sqrt[3]{x} & \text { OR } & f(x)=\sqrt[3]{3}  \tag{x}\\
g(x)=3-x^{2} & g(x)=x^{2}
\end{array}
$$

