## COMBINING FUNCTIONS





**COMPOSITION:** Use the output from one function as the input for another.  $(f \circ g)(x) = f(g(x))$ 

If 
$$f(x) = x + 2$$
 and  $g(x) = x - 1$  find:  
5)  $(f \circ g)(3)$   
 $f(g(3))$   
 $f(g(3))$   
 $F(g(3))$   
 $F(g(3))$   
 $F(g(3)) = 4$   
8)  $(f \circ g)(x)$   
 $f(g(x)) = f(x-1) = x - 1 + 2$   
 $f(g(x)) = f(x-1) = x - 1 + 2$   
 $f(x) = x - 1 + 2$   
 $f(x) = y(x+2) = x + 2$ 

To simplify: 1) Plug x into g.

-1

$$f(f \circ f)(3)$$

$$f(f(3)) = f(5) = 7$$

$$(f \circ g)(x) = f(g(x))$$

**DOMAIN OF A COMPOSITION FUNCTION:** Finding the domain of  $(f \circ g)(x) = f(g(x))$ 

10) Find the domain of  $(f \circ g)(x)$  if  $f(x) = x^2 + 1$  and  $g(x) = \sqrt{x}$   $f(g(x)) = (\sqrt{x})^2 + 1$   $f(g(x)) = (\sqrt{x})^2 + 1$  f(g(x)) = x + 1Suggests R, BUT the inputs must also be the inputs (within the domain) of g(x)

11) Find the domain of  $(f \circ g)(x)$  if  $f(x) = \frac{3x-4}{3x+3}$  and  $g(x) = \frac{x+1}{x-1}$ 

## DECOMPOSING FUNCTIONS

1) Express  $m(x) = (x^2 + 2)^3$  as a composition of two simpler functions f and g, in two different ways.

 $f(x) = x^{3}$  or  $f(x) = (x+2)^{3}$  $g(x) = x^{2}+2$   $g(x) = x^{2}$ 

2) Express  $h(x) = \sqrt[3]{3-x^2}$  as a composition of two simpler functions f and g, in two different ways.

$$f(x) = \sqrt[3]{x}$$
 or  $f(x) = \sqrt[3]{3-x}$   
 $g(x) = 3-x^{2}$   $g(x) = x^{2}$