THE CANDY PROBLEM

Set-up the ordered pairs

($30,1.83$)
(20,1.57)
a. Write the particular equation, expressing cost in terms of ounces.

$$
\begin{array}{r}
m=\frac{1.83-1.57}{30-20}=\frac{.26}{10}=.026 \\
y-1.57=.026(x-20) \\
y-1.57=.026 x-.52 \\
y=.026 x+1.05
\end{array}
$$

b. You saw a 45 -ounce bag that cost $\$ 2.49$. Is the bag over-prices or under-priced? EXPLAIN.

$$
x=45
$$

$$
\begin{aligned}
& y=.026(45)+1.05 \\
& y=2.22
\end{aligned}
$$

c. Suppose a "snack-sized" bag was priced at $\$ 1.25$. How many ounces of candy would you expect to get? $\quad y=1.25$

$$
\begin{gathered}
1.25=.026 x+1.05 \quad \text { About } 7.7 \text { oz of candy. } \\
.20=.026 x \\
x=7.69
\end{gathered}
$$

d. What are the units of slope? What does the number mean in the real world?

$$
\begin{array}{r}
\frac{\text { price }}{\text { \#of oz }} \rightarrow \text { This is the amount you pay }(\$.026 \text { or } 2.64) \\
\text { for every additional ance } \\
\text { of candy. }
\end{array}
$$

e. Find the intercepts and tell what they mean in the real world.

$$
\begin{aligned}
& x \text { int: let } y=0 \\
& y \text { int: let } x=0 \\
& y=.026 x+1.05 \\
& 0=.026 x+1.05 \\
& x=-40.38 \quad(-40.38,0) \\
& \text { At - } 40.38 \text { oz of candy, I pay } \$ 0 \text {. } \\
& \text { f. Sketch a graph of this linear function. } \\
& y=.026(0)+1.05 \\
& y=1.05 \\
& (0,1.05) \int \begin{array}{l}
\text { At } 0 \text { oz, you } \\
\text { pay } 1.05 \text {. }
\end{array} \\
& \text { So its probably } \\
& \text { the cost op packaging. } \\
& \text { in the real word. It is } \\
& \text { irrelevant. }
\end{aligned}
$$

