INVERSE FUNCTIONS

Objectives: 1) Find the inverse of a function.

2) Prove that two functions are inverses of one another.

INVERSES:

A function must be 1 to 1 in order for it to have an inverse. Rather than the vertical line test, use the horizontal line test to test for 1 to 1.

PROVING TWO FUNCTIONS ARE INVERSES:

Two functions f and g are inverses of one another if and only if: f(g(x)) = x and g(f(x)) = x

1) Prove that f and g are inverses for $f(x) = \frac{1}{2}x - 4$ and g(x) = 2x + 8. $f(g(x)) = \frac{1}{2}(2x + 8) - 4 = x + 4 - 4 = x$ $g(f(x)) = 2(\frac{1}{2}x - 4) + 8 = x - 8 + 8 = x$ $g(f(x)) = 2(\frac{1}{2}x - 4) + 8 = x - 8 + 8 = x$ g(f(x)) = x = f(g(x)) = x, $\therefore f \neq 8$ are inverses.

FUNDAMENTAL INVERSE IDENTITIES: For f, a one-to-one function, and f^{-1} , its inverse function: $f[f^{-1}(y)] = y$, for y in the domain f^{-1} and $f^{-1}[f(x)] = x$, for x in the domain f

2) If m and n are inverses and m(2) = 7, find n(7).

$$m(n(z)) = 2$$

 $n(z) = 2$

3) Given $f(x) = 2x^3 - 3$ find $f[f^{-1}(4)]$ (assume that f⁻¹ exists and 4 is in its domain)

> f(f-'(u))= y ! (inverse identity) No need to use (or find) f⁻¹ or f.

