Objectives: 1) Find the inverse of a function.
2) Prove that two functions are inverses of one another.

INVERSES:

A function must be 1 to 1 in order for it to have an inverse. Rather than the vertical line test, use the horizontal line test to test for 1 to 1 .

PROVING TWO FUNCTIONS ARE INVERSES:

Two functions f and g are inverses of one another if and only if: $f(g(x))=x$ and $g(f(x))=x$

1) Prove that f and g are inverses for $f(x)=\frac{1}{2} x-4$ and $g(x)=2 x+8$.

$$
\begin{aligned}
f(g(x))= & \frac{1}{2}(2 x+8)-4=x+4-4=x \\
g(f(x))=2\left(\frac{1}{2} x-4\right)+8 & =x-8+8=x \\
g(f(x)) & =x \quad \& \quad f(g(x))=x, \therefore f \& g \text { are inverses. }
\end{aligned}
$$

FUNDAMENTAL INVERSE IDENTITIES: For f, a one-to-one function, and f^{-1}, its inverse function:

$f\left[f^{-1}(y)\right]=y, \quad$ for y in the domain f^{-1} and
$f^{-1}[f(x)]=x, \quad$ for x in the domain f
2) If m and n are inverses and $m(2)=7$, find $n(7)$.
$m(n(7))=2$
$n(7)=2$

3) Given $f(x)=2 x^{3}-3$ find $f\left[f^{-1}(4)\right.$]
(assume that f^{-1} exists and 4 is in its domain)

$$
f\left(f^{-1}(4)\right)=4 \text { ! (inverse identity) }
$$

No need to use (or find) f^{-1} or f.

Given a function $\mathrm{f}(\mathrm{x})$, the inverse is denoted $f^{-1}(x)$.
NOTE: $f^{-1}(x)$ does NOT mean $\frac{1}{f(x)}$ and the inverse of $f(x)$ is NOT $\frac{1}{f(x)}$.
4) Solve for x : $f^{-1}(x-2)+5=7$ and $f(2)=10$

$$
\begin{array}{ll}
f^{-1}(x-2)=2 & \\
f(2)=10 & \text { Equivalent! } \\
\therefore f^{-1}(10)=2 & x=12
\end{array}
$$

FINDING POSSIBLE INVERSES

1. Use x and y notation.
2. Exchange x and y.
3. Solve for y.
4. Replace $f^{-1}(x)$ notation

$$
(-1,3) \quad(-3,-4)
$$

6) $f(x)$ contains $(3,-1)$ and $(-4,-3)$. Sketch $f^{-1}(x)$.

7) Find the inverse of $f(x)=2 x^{3}-3$

8) $f(x)=x^{3}$. Find $f^{-1}(x)$ and $\left\{\begin{array}{l}(2,0) \\ \text { sketch } .\end{array}\right.$

