Objectives: 1) Graph quadratic functions in vertex form.
2) Complete the square to transform a quadratic equation into vertex form.
3) Find the maximum or minimum values for quadratic and quadratic like functions.

Quadratic functions are given in these two forms:


## CHANGING FROM STANDARD TO VERTEX FORM

Convert to vertex form and graph: COMPLETE THE SQUARE!

$$
\begin{aligned}
& \text { 1) } y=-3 x^{2}+12 x-8 \\
& y+8=-3\left(x^{2}-4 x\right) \\
& y+8-12=-3\left(x^{2}-4 x+4\right) \\
& y-4=-3(x-2)^{2} \\
& y=-3(x-2)^{2}+4 \\
& \text { 2) } y=\frac{2}{3} x^{2}+\frac{4}{3} x-1 \\
& y+1=\frac{2}{3}\left(x^{2}+2 x\right) \\
& y+1+\frac{2}{3}=\frac{2}{3}\left(x^{2}+2 x+1\right) \\
& y=\frac{2}{3}(x+1)^{2}-\frac{5}{3}
\end{aligned}
$$

FINDING MAXIMUM/MINIMUM VALUES:
The vertex is also the maximum or minimum value of a function. "The maximin, $y_{m}$ occurs at $x_{m}$."
When a quadratic is in the form $f(x)=a x^{2}+b x+c$, the $x$ coordinate of the vertex is $x=\frac{-b}{2 a}$.
3) Find the $\mathrm{max} / \mathrm{min}$ of $f(x)=2 x^{2}-4 x+7$
$m i n!$


$$
\begin{aligned}
& \frac{-b}{2 a} \rightarrow \frac{4}{2(2)}=1 \\
& f(1)=2(1)^{2}-4(1)+7=2-4+7=5
\end{aligned}
$$

QUADRATIC-LIKE FUNCTIONS: MAX/MINS
4) Determine the input or output that produces the smallest/largest output for $f(x)=\sqrt{2 x^{2}-4 x+7}$. $\left\{\begin{array}{l}\text { Input is the same! input: } 1 \leftarrow \text { produces } \\ \text { out put: } f(1)=\sqrt{5}<\text { minimum atput }\end{array}\right.$

Answer: Input is 1 .
5) Find the max/min of the function: $f(x)=\sqrt[3]{2 x^{2}-4 x+7}$
min: occurs at same $x$ value!

$$
f(1)=\sqrt[3]{5}
$$

$$
\text { minimum } \sqrt[3]{5} \text { occurs at } x=1
$$

6) Find the $\mathrm{max} / \mathrm{min}$ of the function: $f(x)=\sqrt[4]{2 x^{2}-4 x+7}$
min: $f(1)=\sqrt[4]{5}$

$$
\text { minimum } \sqrt[4]{5} \text { occurs at } x=1
$$

