QUADRATIC FUNCTIONS

- Objectives: 1) Graph quadratic functions in vertex form.
 - 2) Complete the square to transform a quadratic equation into vertex form.
 - 3) Find the maximum or minimum values for quadratic and quadratic like functions.

Quadratic functions are given in these two forms:

CHANGING FROM STANDARD TO VERTEX FORM

Convert to vertex form and graph: COMPLETE THE SQUARE!

1) $y = -3x^{2} + 12x - 8$ $\gamma + \theta = -3(x^{2} - 4x)$ $\gamma + \theta - 12 = -3(x^{2} - 4x + 4)$ $\gamma - 4 = -3(x - 2)^{2}$ $\gamma = -3(x - 2)^{2} + 4$

FINDING MAXIMUM/MINIMUM VALUES:

The vertex is also the maximum or minimum value of a function. "The max/min, y_m occurs at x_m ."

When a quadratic is in the form $f(x) = ax^2 + bx + c$, the x coordinate of the vertex is $x = \frac{-b}{2a}$.

3) Find the max/min of $f(x) = 2x^2 - 4x + 7$ min! $\frac{-b}{2a} - \frac{4}{2(2)} = 1$ $f(1) = 2(1)^2 - 4(1) + 7 = 2 - 4 + 7 = 5$

QUADRATIC-LIKE FUNCTIONS: MAX/MINS

4) Determine the input or output that produces the smallest/largest output for $f(x) = \sqrt{2x^2 - 4x + 7}$.

imput is the same! input:
$$1 \le \text{produces a minimum}$$

output: $f(1) = \sqrt{5}$ minimum adput
Answer: Input is 1.

5) Find the max/min of the function: $f(x) = \sqrt[3]{2x^2 - 4x + 7}$

min: occurs at same x value!

$$f(1) = \sqrt[3]{5}$$

Minimum $\sqrt[3]{5}$ occurs at x=1

6) Find the max/min of the function:
$$f(x) = \sqrt[4]{2x^2 - 4x + 7}$$

$$\min: f(1) = 4/5$$

$$\min: 15 occurs at x=1$$