MODELING WITH FUNCTIONS

Objectives: 1) Model real world scenarios with functions.

SUGGESTED STEPS: 1. Picture and question	NOTATION: Express <u>f</u> in terms of <u>x</u> .	f(x) =
2. Define variable(s)	Examples : Express area in terms of width.	A(w) =
3. Label picture	perimeter side.	P(s) =
4. Equation	cost units produced.	c(u) =
GEOMETRY REVIEW!	profit number sold.	p(n) =

EXAMPLE PROBLEMS: *No two problems are exactly alike, but you can find similarities and problem solve.

1) The perimeter of a rectangle is 50 ft. Express its area as a function of the length of a side.

2) A rectangle is inscribed in a circle with radius 5. Express the perimeter as a function of the length.

$$P = 2l + 2w$$

$$100 = l^{2} + w^{2}$$

$$w = \sqrt{100 - l^{2}}$$

$$P(l) = 2l + 2\sqrt{100 - l^{2}}$$

3) Let p(x,y) be a point on: $y = x^2 - 4x + 9$. Express the distance from P to the point (6,0) as a function of one variable.

4.4 Notes 4) A right triangle has one vertex on $y = 25 - x^2$, one at the origin, and one at (x,0). Express the area of the triangle as a function of one variable.

5) A piece of wire x in. long is bent into a circle. Express the area in terms of x.

C=211r	$A(x) = \pi r^2$
x = 2πr	$A(x) = \pi \left(\frac{x}{x} \right)^2 = \pi \frac{x^2}{4\pi^2}$
$\Gamma = \frac{X}{2\pi}$	$A(x) = \frac{x^2}{4\pi}$

6) A right circular cylinder has a volume of 10 cubic cm. Find the surface area S as a function of the radius of the base.

$$V = \pi r^{2}h$$

$$\pi r^{2}h = 10$$

$$S(r) = 2\pi r^{2} + 2\pi r h$$

$$replace h$$

$$S(r) = 2\pi r^{2} + 2\pi r \left(\frac{10}{\pi r^{2}}\right)$$

$$S(r) = 2\pi r^{2} + 2\pi r \left(\frac{10}{\pi r^{2}}\right)$$

7) Two numbers sum to be 100. Express the product P in terms of a single number.

$$x + y = 100$$
 $y = 100 - x$
 $P(x) = x y$ replace y
 $P(x) = x(100 - x)$
 $P(x) = 100 x - x^{2}$

8) Revenue = (price per unit) • (# of units sold) $R = p \cdot x$ Price is often a function of the number of units produced (demand curve): $p = m \cdot x + b$ Suppose the price (demand) curve is: p = -0.5x + 6. Express the revenue as a function of x

$$P(x) = P \cdot x$$

 $replace P$
 $P(x) = (-.5x + 6)x$
 $R(x) = -.5x^{2} + 6x$