Objectives: 1) Model real world scenarios with functions.

SUGGESTED STEPS:

1. Picture and question
2. Define variables)
3. Label picture
4. Equation

NOTATION:

Express f if \qquad in terms of \qquad -

$$
f(x)=\ldots
$$

Examples: Express area in terms of width.
$A(w)=\ldots$
perimeter side. units produced.
$P(s)=$
$c(u)=\ldots$
$p(n)=\ldots$

EXAMPLE PROBLEMS: * No two problems are exactly alike, but you can find similarities and problem solve.

1) The perimeter of a rectangle is 50 ft . Express its area as a function of the length of a side.

2) A rectangle is inscribed in a circle with radius 5 . Express the perimeter as a function of the length.

$$
P=2 l+2 w
$$

$$
100=\ell^{2}+\omega^{2}
$$

$$
\omega=\sqrt{100-l^{2}}
$$

$$
P(l)=2 \ell+2 \sqrt{100-l^{2}}
$$

3) Let $p(x, y)$ be a point on: $y=x^{2}-4 x+9$. Express the distance from P to the point $(6,0)$ as a function of one variable.

$$
D=\sqrt{(x-6)^{2}+(y-0)^{2}}
$$

$$
D(x)=\sqrt{(x-6)^{2}+\left(x^{2}-4 x+9\right)^{2}}
$$

4) A right triangle has one vertex on $y=25-x^{2}$, one at the origin, and one at ($x, 0$). Express the area of the triangle as a function of one variable.

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A(x)=\frac{1}{2} \times\left(25-x^{2}\right)
\end{aligned}
$$

$$
A(x)=\frac{25}{2} x-\frac{1}{2} x^{3}
$$

5) A piece of wire x in. long is bent into a circle. Express the area in terms of x.

$$
\begin{array}{ll}
C=2 \pi r & A(x)=\pi r^{2} \\
x=2 \pi r & A(x)=\pi\left(\frac{x}{2 \pi}\right)^{2}=\pi \frac{x^{2}}{4 \pi^{2}} \\
r=\frac{x}{2 \pi} & A(x)=\frac{x^{2}}{4 \pi}
\end{array}
$$

6) A right circular cylinder has a volume of 10 cubic cm . Find the surface area S as a function of the radius of the base.

$$
\begin{aligned}
& V=\pi r^{2} h \\
& \pi r^{2} h=10 \\
& S(r)=2 \pi r^{2}+2 \pi r h_{r e p l a c e ~} \\
& S r^{2} \\
& S(r)=2 \pi r^{2}+2 \pi r\left(\frac{10}{\pi r^{2}}\right)
\end{aligned}
$$

$$
S(r)=2 \pi r^{2}+\frac{20}{r}
$$

7) Two numbers sum to be 100. Express the product P in terms of a single number.

$$
\begin{aligned}
& x+y=100 \quad y=100-x \\
& P(x)=x y \text { replace } y \\
& P(x)=x(100-x) \\
& P(x)=100 x-x^{2}
\end{aligned}
$$

8) Revenue $=($ price per unit) $\cdot(\#$ of units sold) $R=p \cdot x$

Price is often a function of the number of units produced (demand curve): $p=m \cdot x+b$ Suppose the price (demand) curve is: $p=-0.5 x+6$. Express the revenue as a function of x

$$
\begin{array}{ll}
R(x)= & \frac{p \cdot x}{} \text { replace } p \\
R(x)=(-.5 x+6) x & R(x)=-.5 x^{2}+6 x
\end{array}
$$

