Objectives: 1) Model real world scenarios with functions.

1) A wire of length L is cut into two pieces. The first is bent into an equilateral triangle and the second into a rectangle with length twice the width. Express the total combined area as a function of x where x is the perimeter of the triangle.

$$
P=x
$$

$A=\frac{\sqrt{3}}{4} s^{2}+w \cdot 2 \omega$
2) The volume of a right circular cylinder is numerically 3 times the surface area. Find:

$$
S=\frac{x}{3}
$$

$$
\frac{L-x}{6}=\omega
$$

a) The height as a function of the radius.
b) The radius as a function of height.

$$
\begin{aligned}
& \begin{array}{ll}
V=\text { Area of base-height } S A=2 \pi r^{2}+2 \pi r h \\
V=3 \cdot S A & \\
3 \cdot\left(\pi r^{2} \cdot 2+2 \pi r h\right)=\pi r^{2} \cdot h & b) h=\frac{-6 r}{6-r} \\
6 \pi r^{2}+6 \pi r h=\pi r^{2} h & 6 h-r h=-6 r \\
6 \pi r h-\pi r^{2} h=-6 \pi r^{2} & 6 h=-6 r+r h \\
\text { a) } & 6 h=r(-6+h)
\end{array} \\
& \begin{array}{ll}
V=\text { Area of base-height } S A=2 \pi r^{2}+2 \pi r h \\
V=3 \cdot S A & \\
3 \cdot\left(\pi r^{2} \cdot 2+2 \pi r h\right)=\pi r^{2} \cdot h & b) h=\frac{-6 r}{6-r} \\
6 \pi r^{2}+6 \pi r h=\pi r^{2} h & 6 h-r h=-6 r \\
6 \pi r h-\pi r^{2} h=-6 \pi r^{2} & 6 h=-6 r+r h \\
\text { a) } & 6 h=r(-6+h)
\end{array} \\
& \begin{array}{ll}
V=\text { Area of base-height } S A=2 \pi r^{2}+2 \pi r h \\
V=3 \cdot S A & \\
3 \cdot\left(\pi r^{2} \cdot 2+2 \pi r h\right)=\pi r^{2} \cdot h & b) h=\frac{-6 r}{6-r} \\
6 \pi r^{2}+6 \pi r h=\pi r^{2} h & 6 h-r h=-6 r \\
6 \pi r h-\pi r^{2} h=-6 \pi r^{2} & 6 h=-6 r+r h \\
\text { a) } & 6 h=r(-6+h)
\end{array} \\
& \begin{array}{ll}
V=\text { Area of base-height } S A=2 \pi r^{2}+2 \pi r h \\
V=3 \cdot S A & \\
3 \cdot\left(\pi r^{2} \cdot 2+2 \pi r h\right)=\pi r^{2} \cdot h & b) h=\frac{-6 r}{6-r} \\
6 \pi r^{2}+6 \pi r h=\pi r^{2} h & 6 h-r h=-6 r \\
6 \pi r h-\pi r^{2} h=-6 \pi r^{2} & 6 h=-6 r+r h \\
\text { a) } & 6 h=r(-6+h)
\end{array} \\
& \begin{array}{ll}
V=\text { Area of base-height } S A=2 \pi r^{2}+2 \pi r h \\
V=3 \cdot S A & \\
3 \cdot\left(\pi r^{2} \cdot 2+2 \pi r h\right)=\pi r^{2} \cdot h & b) h=\frac{-6 r}{6-r} \\
6 \pi r^{2}+6 \pi r h=\pi r^{2} h & 6 h-r h=-6 r \\
6 \pi r h-\pi r^{2} h=-6 \pi r^{2} & 6 h=-6 r+r h \\
\text { a) } & 6 h=r(-6+h)
\end{array} \\
& \text { a) } \\
& \begin{array}{lll}
V=\text { Area of base-height } S A=2 \pi r^{2}+2 \pi r h \\
V=3 \cdot S A & \\
3 \cdot\left(\pi r^{2} \cdot 2+2 \pi r h\right)=\pi r^{2} \cdot h & b) h=\frac{-6 r}{6-r} \\
6 \pi i r^{2}+6 \pi r h=\pi r^{2} h & 6 h-r h=-6 r \\
6 \pi r h-\pi r^{2} h=-6 \pi r^{2} & 6 h=-6 r+r h \\
\text { a) } & 6 h=r(-6+h)
\end{array} \\
& h\left(6 \pi r-\pi r^{2}\right)=-6 \pi r^{2} \\
& \begin{array}{l}
\left(6 \pi r-\pi r^{2}\right)=-6 \pi r^{2} \\
h=\frac{-6 \pi r^{2}}{6 \pi r-\pi r^{2}}=\frac{-6 \pi r^{2}}{\pi r(6-r)}=\frac{-6 r}{6-r}=h(r)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& A_{\Delta}+A_{\square} A(x)=\frac{\sqrt{3}}{4}\left(\frac{x}{3}\right)^{2}+2\left(\frac{1-x}{6}\right)^{2} \\
& A(x)=\frac{\sqrt{3}}{36} x^{2}+\frac{(1-x)^{2}}{18}
\end{aligned}
$$

3) A line is drawn from the origin O to a point (x, y) in the first quadrant on the graph $y=\frac{1}{x}$.

From point P, a line is drawn perpendicular to the x-axis, meeting the x-axis at B.
a) Draw a diagram for this situation.
b) Write the area of the triangle as a function of x.

$$
\begin{aligned}
& A=\frac{1}{2} b \cdot h \\
& A=\frac{1}{2}(x)(y) \\
& A(x)=\frac{1}{2} \cdot x \cdot \frac{1}{x}=\frac{1}{2}
\end{aligned}
$$

4) A man stands at a point A on the bank of a straight river 2 mi wide. To reach point $B, 7 \mathrm{mi}$ downstream on the opposite bank, he first rows his boat to point P on the opposite bank and then walks the remaining distance x to B. He can row at a speed of $2 \mathrm{mi} / \mathrm{hr}$ and walk at a speed of $5 \mathrm{mi} / \mathrm{hr}$. Find a function that models the time for the trip.

5) A Norman window is in the shape of a rectangle surmounted by a semicircle. If the perimeter of the window is 40 , express the area of the window as a function of the radius of the semicircle.

$$
\begin{gathered}
A=\frac{\pi r^{2}}{2}+2 r \cdot \frac{x}{2} r e p l a c e " x " \\
2 x+2 x+2 r=40 \\
x=-\frac{\pi r}{2}-r r+40
\end{gathered} \underbrace{2 r x}_{\text {or }}=2 r x=(-2 r-\pi r+40) r
$$

$$
A(r)=\frac{\pi r^{2}}{2}+-2 r^{2}-\pi r^{2}+40 r
$$

$$
A(r)=\frac{\pi}{2} r^{2}-2 r^{2}-\pi r^{2}+40 r
$$

$$
A(r)=\left(\frac{\pi}{2}-2-\pi\right) r^{2}+40 r
$$

$$
A(r)=\left(-\frac{\pi}{2}-2\right) r^{2}+40 r
$$

$$
A(r)=\left(-\frac{\pi-4}{2}\right) r^{2}+40 r
$$

