Objectives: 1) Find maximum and minimum values of a graph of a function.

1) A can in the shape of a right circular cylinder is required to have a volume of 500 cubic centimeters. The top and bottom are made of material that costs 6ζ per square centimeter, while the sides are made of material that costs 4ζ per square centimeter.
a. Express the total cost C of the material as a function of the radius r of the cylinder.
b. Use the graph to find the dimensions that make the cost C a minimum.

$$
\begin{aligned}
& V=\pi r^{2} \cdot h \\
& 500=\pi r^{2} h \\
& S A=2 \pi r^{2}+2 \pi r h
\end{aligned}
$$

Gives amount $\quad C=2 \pi r^{2}(.06)+2 \pi r h(.04)$
of material
needed

$$
C=.12 \pi r^{2}+2 \pi r \cdot\left(\frac{500}{\pi r^{2}}\right)(.04)
$$

Using our calculator, Min: $(3.757,15.96)$

$$
c=.12 \pi r^{2}+\frac{40}{r}
$$

* Min. cost is $\$ 15.96$ when radus is 3.757 cm

2) A rain gutter is to be made of aluminum sheets that are 12 inches wide by turning up the edges 90°. What depth will provide maximum cross-sectional area and allow the most water to flow?

$$
A(x)=x(12-2 x)
$$

$$
A(x)=12 x-2 x^{2}
$$

$$
\frac{-b}{2 a}=\frac{-12}{2(-2)}=3^{\text {max }} \text { which }
$$

$$
A(3)=12(3)-2(3)^{2}
$$

$$
A(3)=36-12=18<\text { max cross sectional area }
$$

3) A liquid storage container on a truck is in the shape of a cylinder with hemispheres on each end. The cylinders and hemispheres have the same radius. Determine the volume as a function of the radius x.

$$
\begin{aligned}
140 & =2 x+h \\
V & =\frac{4}{3} \pi r^{3}+\pi r^{2} h \\
V(x) & =\frac{4}{3} \pi x^{3}+\pi \cdot x^{2} \cdot(-2 x+140) \\
V(x) & =\frac{4}{3} \pi x^{3}-2 \pi+140
\end{aligned}
$$

