Objectives: 1) Graph polynomial functions.

POWER FUNCTION: $f(x)=k x^{p}$
(where k and p are constants)

The end behavior of even integer power functions is the same.
The end behavior of odd integer functions is the same.

TRANSLATION EXAMPLES:

x	y
-2	-8
-1	1
0	0
1	1
2	8

reflect:
$(-2,-8)$ is now
$(-2,8)$
$\left.\begin{array}{l}\text { now } \text { shift left } 2 \\ \text { i shift down 1 }\end{array}\right\}$
$(-2,2)$ becomes
$(-4,7)$

POLYNOMIAL FUNCTION: $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ Ex: $\quad f(x)=x^{4}-3 x^{3}+4 x+2$
PROPERTIES: 1. No breaks or cusps.
2. If degree is n, the number of turning points is at most $n-1$.
3. As x gets very + or - , then the polynomial looks like a power function.

Not Polynomial Functions:

Which of the following could be the graph of
looks like $y=-x^{3}$

(a)

This looks like $y=x^{3}$

(b)

(c)

Too many
turning points!

END BEHAVIOR:

DEGREE: EVEN
LEADING COEFFICIENT: +

DEGREE: EVEN
LEADING COEFFICIENT: -

DEGREE: ODD
LEADING COEFFICIENT: +

DEGREE: ODD
LEADING COEFFICIENT: -

MULTIPLICITY: How many times a zero occurs in a function. $f(x)=(x-2)^{3}$ Multiplicty 3 The SAM

BEHAVIOR NEAR ROOTS: Determined by the exponent of the root factor and substituting that value into the other, "non-zero" terms.

EVEN TOUCHES THE X AXIS

EXAMPLE: $f(x)=-(x-1)^{2}$

EXAMPLE: $g(x)=(x+2)^{3}$
$y=x^{5}$ Example: $f(x)=(x-2)^{3}(x+3)^{2}$

around $x=2$,

$$
f(x)=(x-2)^{3} \cdot(5)^{2}=25(x-2)^{3}
$$

$$
C(x-2)^{3}
$$

around $x=-3$

$$
f(x)=(-5)^{3}(x+3)^{2}=-125(x+3)^{2}
$$

STEPS FOR GRAPHING POLYNOMIAL FUNCTIONS: 1. End behavior 2. Roots 3. Root behavior.

1) $f(x)=x(x-2)(x+3)$
2) $f(x)=x(x-2)(x+3)^{2}$
3) $f(x)=\frac{1}{4}(x+2)(x-3)^{3}$
4) $y=x^{3}$
5)
6) $y=x^{4} \quad \backsim$
7) $x=0,2,-3$
8) near $x=0,(-2)(-3)^{2}=-18 x$
9) $y=x^{+} x^{4} \quad$ 2.) $x=-2,3$
10) $x=0,2,-3$
$x=2,2(5)^{2}(x-2)=50(x-2)$

$x=-3,-3(-5)(x+3)^{2}=15(x+3)^{2}$
11) near $x=-2$
$f(x)=-6 x$
$f(x)=10(x-2)$
$f(x)=-3(-5)(x+3)$
$f(x)=15(x+3)$

$(0,0)$
12) Write a possible equation for the function:

