Objectives: 1) Condense and expand expressions using log properties
2) Find an $x$ intercept using log properties
3) Use a logarithm to solve an equation
4) Use change of base to simplify expressions

## THREE GOLDEN RULES!

## PROPERTIES OF LOGS:

## EXPONENTS:

1) Log of a Product: $\log _{x} a b=\log _{x} a+\log _{x} b$
2) Log of a Quotient: $\log _{x} \frac{a}{b}=\log _{x} a-\log _{x} b$
3) Log of a Power: $\log _{x} a^{b}=b \log _{x} a$
4) Product of Powers: $x^{a} \cdot x^{b}=x^{a+b}$
5) Quotient of Powers: $\frac{x^{a}}{x^{b}}=x^{a-b}$
6) Power of a Power: $\left(x^{a}\right)^{b}=x^{a b}$

## EVALUATE!

Given $\log _{b} 2=A, \log _{b} 5=B$, and $\log _{b} 7=C$, evaluate the following:
1)
$\log _{b} \sqrt[5]{.4}=\log _{b}\left(\frac{2}{5}\right)^{1 / 5}$
2) $\log _{b}\left(\frac{7}{16}\right)$
$\frac{1}{5} \log _{b} \frac{2}{5}$ $\frac{1}{5}\left(\log _{b} 2-\log _{b} 5\right)$
$\log _{b} 7-\log _{b} 16 \approx 2^{4}$
$\log _{b} 7-4 \log _{b} 2$
$C-4(A)$
3) $\log _{b} 3.5$
$\log _{b} \frac{7}{2}$
$\log _{b} 7-\log _{b} 2$
$C-A$

Rewrite as sums and differences so that no products, quotients or powers appear.
4) $\log _{a}\left(x \sqrt{x^{2}+1}\right) \quad x>0$
$\log _{a} x+\log _{a} \sqrt{x^{2}+1}$
$\log _{a} x+\frac{1}{2} \log _{a}\left(x^{2}+1\right)$
$\uparrow_{\text {STOP! }}$
split this
up!

$$
\begin{aligned}
& \text { 5) } \log _{a} \frac{\sqrt{x^{2}+1}}{x^{3}(x+1)^{4}} \quad x>0 \\
& \log _{a} \sqrt{x^{2}+1}-\log _{a} x^{3}-\log _{a}(x+1)^{4} \\
& \frac{1}{2} \log _{a}\left(x^{2}+1\right)-3 \log _{a} x-4 \log _{a}(x+1)
\end{aligned}
$$

## CONDENSE!

## Simplify into a single logarithm with coefficient 1.

6) $\log _{a} 7+4 \log _{a} 3$
7) $\frac{1}{3}\left[\log _{2} x+\log _{2}(x+1)\right]$
8) $\log _{a} x+\log _{a} 9+\log _{a}\left(x^{2}+1\right)-\log _{a} 5$
$\log _{a} 7 \cdot 3^{4}$

$\log _{a} \frac{9 x\left(x^{2}+1\right)}{5}$

## YOU TRY

Expand:
9) $\log _{3} \frac{x^{2} y}{\sqrt[5]{3 x-1}}$
10) $\log _{4} 5 x^{3} y$
11) $\log _{7} h^{2} j^{11} k^{-5}$
12) $\ln \frac{\sqrt{3 x-5}}{7}$
$2 \log _{3} x+\log _{3} y-\frac{1}{5} \log _{3}(3 x-1)$
$\log _{4} 5+3 \log _{4} x+\log _{4} h+1 \log _{7} j-5 \log _{7} k$
$\frac{1}{2} \ln (3 x-5)-\ln 7$
Condense:
13) $\frac{1}{2} \log x+3 \log (x+1)$
14) $2 \ln (x+2)-\ln x$
$\ln \frac{(x+2)^{2}}{x}$
15) $2\left[\log _{3} x+3 \log _{3}(x-2)\right]$
$\log \left(\sqrt{x} \cdot(x+1)^{3}\right)$

$$
\begin{aligned}
& 2\left(\log _{3} x \cdot(x-2)^{3}\right) \\
& 2 \log _{3}\left(x(x-2)^{3}\right)
\end{aligned}
$$

$$
\log _{3}\left(x(x-2)^{3}\right)^{2}
$$

Sometimes, when solving an exponential equation, we must use logs. There are two types of exponential equations those that can be written with the same base, and those that cannot.

SAME BASE VS. NOT SAME BASE

$$
4^{x}=32 \quad 4^{x}=31
$$

$$
\left(2^{2}\right)^{x}=2^{5}
$$

Whenever you get "stuck" in an exponential or log equation, rewrite it as its opposite! YOU CAN SOLVE IT IN ONE OF TWO WAYS.

Solve the following exponential equations.

1) $4 \cdot 10^{x}=1$

2) $2^{-3 x}=45$
$\log _{2} 45=-3 x$
$\frac{\log _{2} 45}{-3}=x$

When solving for an $x$ int!
3) $y=3^{x}-5$
$0=3^{x}-5$
$5=3^{x}$
$\log _{3} 5=x$

Another way to solve:

## The inverse of an exponential function is a log!

7) $8^{x}=23$

8) $4^{x}=7$
$\log _{4} 4^{x}=\log _{4} 7$
$x=\log _{4} 7$

CHANGE OF BASE:
$\log _{a} x=\frac{\log _{b} x}{\log _{b} a} \quad$ EX) $\log _{8} 23=\frac{\log 23}{\log 8}$

