5.4 Notes

PROPERTIES OF LOGARITHMS

Objectives: 1) Condense and expand expressions using log properties

- 2) Find an x intercept using log properties
- 3) Use a logarithm to solve an equation
- 4) Use change of base to simplify expressions

6)
$$\log_{a} 7 + 4\log_{a} 3$$

 $1 \frac{1}{3} \left[\log_{2} x + \log_{2} (x+1) \right]$
 $\frac{1}{3} \left[\log_{2} x + \log_{2} (x+1) \right]$
 $\frac{1}{3} \left[\log_{2} (x(x+1)) \right]$
 $\log_{a} x + \log_{a} 9 + \log_{a} (x^{2}+1) - \log_{a} 5 + \log_{a} (x^{2}+1) - \log_{a} 5 + \log_{a} (x^{2}+1) \right]$

YOU TRY

Expand:

9)
$$\log_{3} \frac{x^{2}y}{\sqrt[5]{3x-1}}$$
 10) $\log_{4} 5x^{3}y$ 11) $\log_{7} h^{2} j^{11} k^{-5}$ 12) $\ln \frac{\sqrt{3x-5}}{7}$
 $2\log_{3}x + \log_{3}y - \frac{1}{5}\log_{3}(3x-1)$
 $\log_{4}5 + 3\log_{4}x + \log_{4}y$
 $\frac{1}{5}\ln(3x-5) - \ln 7$

Condense:

 $4^{x} = 32$

 $(2^{2})^{k} = 2^{5}$

13)
$$\frac{1}{2}\log x + 3\log(x+1)$$

 $\log(\sqrt{x} \cdot (x+1)^3)$
14) $2\ln(x+2) - \ln x$
 $\ln \frac{(x+2)^2}{x}$

15)
$$2[\log_3 x + 3\log_3 (x-2)]$$

 $2(\log_3 x \cdot (x-2)^3)$
 $2\log_3 (x(x-2)^3)$
 $\log_3 (x(x-2)^3)$
 $\log_3 (x(x-2)^3)$

USING LOGS TO SOLVE EXPONENTIAL EQUATIONS

Sometimes, when solving an exponential equation, we must use logs. There are two types of exponential equations -

those that can be written with the same base, and those that cannot. **SAME BASE VS. NOT SAME BASE**

 $4^{x} = 31$

Whenever you get "stuck" in an exponential or log equation, rewrite it as its opposite! **YOU CAN SOLVE IT IN ONE OF TWO WAYS**.

