5.5 Notes

/

EQUATIONS AND INEQUALITIES W/ LOGS AND EXPONENTS

Objectives: 1) Solve log equations, with respect to a restricted domain.

- 2) Solve log inequalities with respect to a restricted domain.
- 3) Use inverses to solve a log or exponential equation or inequality.

SOLVING LOG/EXPONENTIAL EQUATIONS:
USE INVERSE OPERATIONS:
1)
$$\log_2(y+2)-1=\log_2(y-2)$$

 $\log_2(y+2)-1=\log_2(y-2)$
 $\log_2(y+2)-1=\log_2(y-2)$
 $\log_2(y+2)-1=\log_2(y-2)$
 $\log_2(y+2)-1=\log_2(y-2)$
 $\log_2(y+2)-1=\log_2(y-2)$
 $\log_2(y+2)-1=\log_2(y-2)$
 $\log_2(y+2)-1=\log_2(y-2)$
 $\sqrt{y+2}=2^1$
 $\sqrt{$

 $10^{\circ} = 10g_2(10g_7 \times))$

2' = log -x

x=49

 $7^2 = x$

x = -2

no solution

X=2

YOU TRY!

9)
$$\log_{10}(x^2 - 21x) = 2$$

 $o^2 = x^2 - 2(x)$
 $x^2 - 21x - 100 = 6$
 $(x - 25)(x + 4) = 0$
 $\boxed{x = 25, -4}$
 $\boxed{Both sol, work}$
10) $\log_2 x + \log_2(22 - 5x) = 3$
 $\log_2 x(22 - 5x) = 3$
 $\log_2 x(22 - 5x) = 3$
 $2^3 = 22x - 5x^2$
 $0 = 5x^2 - 22x + 8$
 $0 = 5x^2 - 20x - 2x + 8$
 $0 = 5x(x - 4) - 2(x - 4)$
 $\int x = \frac{2}{5} x = \frac{4}{5}$
Both couttous
 $\int x = \frac{2}{5} x = \frac{4}{5}$
Both couttous

SOLVING LOG/EXPONENTIAL INEQUALITIES:

1. Logging or exponentiating both sides of an equation **does NOT change** the inequality direction.

2. Log_b a is negative when 0 < a < 1; multiplication/division **DOES change** the inequality direction.

=

3. Logs have domain restrictions. These restrictions must be considered in inequality situations.

11)
$$4(1^{x}-5) < 8$$

 $\frac{1}{10}^{x}-5 < 2$
 $\frac{1}{10}^{x}-5 < 109 + 10}$
 $x < 109 + \frac{1}{10}^{x}-7$
 $x < 109 + \frac{1}{10}^{x}-7$
 $x < 109 + \frac{1}{10}^{x}-7$
 $\frac{1}{10}^{x}-7$
 $\frac{$