Objectives: 1) Solve log equations, with respect to a restricted domain.
2) Solve log inequalities with respect to a restricted domain.
3) Use inverses to solve a log or exponential equation or inequality.

SOLVING LOG/EXPONENTIAL EQUATIONS:

USE INVERSE OPERATIONS!

1) $\begin{gathered}\log _{2}(y+2)-1=\log _{2}(y-2) \\ \log _{2}(y+2)-\log _{2}(y-2)=1 \\ \log _{2} \frac{(y+2)}{(y-2)}=1 \\ \frac{y+2}{y-2}=2^{1} \\ y+2=2(y-2) \\ y+2=2 y-4 \\ y=6\end{gathered}$
2) $\log _{10}\left(\log _{10} x\right)=4$
1010

$$
\begin{aligned}
& \log _{10} x=10^{4} \\
& 10^{10^{4}}=x
\end{aligned}
$$

3) $3^{2 x-1}=6^{x}$
$\ln 3^{2 x-1}=\ln 6^{x}$
$(2 x-1) \ln 3=x \ln 6$ $2 x(\ln 3)-\ln 3=x \ln 6$

$$
\begin{aligned}
& 2 x \ln 3-x \ln 6=\ln 3 \\
& x(2 \ln 3-\ln 6)=\ln 3 \\
& x=\frac{\ln 3}{2 \ln 3-\ln 6}
\end{aligned}
$$

Find the intercepts for
4) $y=4\left(5^{2 x}\right)-5^{x}-5$
y int: $x=0$
$y=4\left(5^{\circ}\right)-5^{0}-5=-2 \quad(0,-2)$
x int: $y=0$ let $t=5^{x}$
$0=4 t^{2}-t-5$
$0=(4 t-5)(t+1)$
$t=\frac{5}{4} \quad t=-1$

Extraneous solutions!
5) $2 \log _{5}(-x)-\frac{3}{2} \log _{5} 25=-5$
$\log _{5} \frac{(-x)^{2}}{(25)^{3 / 2}}=-5$
$\frac{x^{2}}{\left(5^{2}\right)^{3 / 2}}=5^{-5}$
$\frac{x^{2}}{5^{3}}=\frac{1}{5^{5}} \quad$ Check w/ original $x^{2}=\frac{1}{5^{5}} \cdot 5^{3}=\frac{1}{5^{2}} \quad x=\frac{1}{3}$ gives a neg. arg

$$
x=\sqrt[\pm]{\frac{1}{25}} \Longrightarrow x= \pm \frac{1}{5}
$$

YOU TRY!

6) $e^{\ln x}=2$
7) $\log _{10}\left[\log _{2}\left(\log _{7} x\right)\right]=0$
8) $10^{\log _{10} x}=-2$

$$
\begin{aligned}
& 10^{0}\left.=\log _{2}\left(\log _{7} x\right)\right) \\
& 2^{1}=\log _{7} x \\
& 7^{2}=x \\
& x=49
\end{aligned}
$$

9) $\log _{10}\left(x^{2}-21 x\right)=2$

$$
\begin{aligned}
& 0^{2}=x^{2}-21 x \\
& x^{2}-21 x-100=0 \\
& (x-25)(x+4)=0 \\
& \hat{U}_{\text {Both sol work }}
\end{aligned}
$$

10) $\log _{2} x+\log _{2}(22-5 x)=3$

$$
\begin{aligned}
& \log _{2} x(22-5 x)=3 \\
& 2^{3}=22 x-5 x^{2} \\
& 0=5 x^{2}-22 x+8 \\
& 0=5 x^{2}-20 x-2 x+8 \\
& 0=5 x(x-4)-2(x-4) \\
& 0=(5 x-2)(x-4) \\
& x=\frac{2}{5} x=4 \quad \text { Both solutions }
\end{aligned}
$$

SOLVING LOG/EXPONENTIAL INEQUALITIES:

1. Logging or exponentiating both sides of an equation does NOT change the inequality direction.
2. $\log _{b} a$ is negative when $0<a<1$; multiplication/division DOES change the inequality direction.
3. Logs have domain restrictions. These restrictions must be considered in inequality situations.
11) $4\left(.1^{x}-5\right)<8$

$$
\frac{1}{10}^{x}-5<2
$$

$$
\frac{1}{10} x<7
$$

$\log _{\frac{1}{10}} \frac{1}{10} x<\log _{\frac{1}{10}} 7$
$x<\log _{\frac{1}{10}} 7$
14) $\ln (x-5)+\ln (x) \leq \ln 36$

$$
\ln (x-5)(x) \leq \ln 36
$$

$$
\begin{aligned}
& x^{2}-5 x \leq 36 \\
& x^{2}-5 x-36 \leq 0 \\
& (x-9)(x+4) \leq 0
\end{aligned}
$$

12) $\quad \ln (4-5 x) \leq 2 \quad 4-5 x>0 \quad x$
12) $e^{\ln (4-5 x) \leq 2} e^{2}$
$4-5 x \leq e^{2}$
$-5 x \leq e^{2}-4$
$x \geq \frac{e^{2}-4}{-5}$

$$
\left[\frac{e^{2}-4}{-5}, \frac{4}{5}\right)
$$

15) $e^{-x^{2}}<e^{-24}$

$$
-x^{2}<-24
$$

$$
\begin{array}{ll}
-x^{2}<-24 & x^{2}=24 \\
x^{2}>24 & x= \pm 2 \sqrt{6}
\end{array}
$$

$$
x^{2}-24>0
$$

$(-\infty, 2 \sqrt{6}) \cup(2 \sqrt{6}, \infty)$

Domain: \mathbb{R}_{2}
13) $e^{4-5 x} \leq 2$
$\ln e^{4-5 x} \leq \ln 2$
$4-5 x \leq \ln 2$
$-5 x \leq \ln 2-4$
$x \geq \frac{\ln 2-4}{-5}$
$\left[\frac{\ln 2-4}{-5}, \infty\right)$
-D: $\left(-\infty,-\frac{1}{4}\right)\left(\frac{2}{3}, \infty\right)$
16) $\ln \frac{3 x-2}{4 x+1}>\ln 2$

$$
\begin{aligned}
& \frac{3 x-2}{4 x+1}>2 \\
& \frac{3 x-2}{4 x+1}-2>0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3 x-2-2(4 x+1)}{4 x+1}>0 \\
& \frac{-5 x-4}{4 x+1}>0 \stackrel{-4}{5},-\frac{1}{4} \\
& \frac{5 x+4}{4 x+1}<0
\end{aligned}
$$

