COMPOUND INTEREST

Objectives: 1) Find the amount of time it takes to double an investment.
2) Compute the effective rate when compounded at different periods of time.
3) Compute the nominal rate when given the effective rate.

FORMULAS

SIMPLE INTEREST COMPOUND INTEREST (N TIMES PER YEAR)
$A=P\left(1+\frac{r}{n}\right)^{n t}$

COMPOUND INTEREST
(CONTINUOUS)
$A=P e^{r t}$

DOUBLING TIME

$$
T_{2}=\frac{\ln 2}{r}
$$

VARIABLES:

$A=$ amount in account $r=$ annual interest rate $n=$ number of times per year
$\mathrm{P}=$ principal (invested)
$t=$ time in years
$\mathrm{T}_{2}=$ doubling time

VOCABULARY:

NOMINAL RATE: The rate in name only. Meaning, the nominal rate does not take into account how interest is compounded! PERIODIC RATE: The interest rate being paid at each time period. EFFECTIVE RATE (APR): The simple interest rate that gives the same result as the nominal rate compounded.

Examples

1. Compare the account totals for $\$ 12,000$ deposited into quarterly and continuously compounded accounts after 5 years with annual interest rate of 9%. Also compare the nominal and effective rates.

$$
\begin{aligned}
& \text { Continuously: } \\
& A=P e^{r t}
\end{aligned}
$$

$$
\begin{aligned}
& A=P e^{r t} \\
& A=12.000 e^{.09(5)}=
\end{aligned}
$$

$18,819.746$
$\$ 18,819.74$

$$
\begin{aligned}
& \text { nominal rate: } 9 \% \\
& \text { effective rate: } t=1 \\
& \qquad \begin{array}{r}
\left(1+\frac{.09}{4}\right)^{4}
\end{array} \quad 1.09308 \\
&
\end{aligned}
$$

$$
\text { nominal rate: } 9 \%
$$

$$
\text { effective rate: } t=1
$$

$$
e^{.09(1)} \approx 1.09417
$$

$$
9.4 \% \text { effective rate }
$$

2. Find the doubling time for the continuous account in example 1 .

$$
\begin{aligned}
24000 & =12000 e^{.09 t} \\
2 & =e^{.09 t} \\
\ln 2 & =.09 t
\end{aligned}
$$

$$
t=\frac{\ln 2}{.09} \approx 7.7 \quad \text { About 7.7 yrs }
$$

Alternatively:
(we are just approximating)

$$
\begin{gathered}
\ln 2 \approx .69 \\
\frac{.69}{.09}=\frac{69}{100} \cdot \frac{72}{9} 9 \\
\hline 8 \text { yrs }
\end{gathered}
$$

3. You need $\$ 15,000$ for a down payment on a new home in 5 years. If the bank guarantees 4% APR on a certificate of deposit (CD) that compounds monthly, how much needs to be deposited into the account today? What if the interest is compounded continuously?

$$
\begin{aligned}
& 15000=P\left(1+\frac{.04}{12}\right)^{12(5)} \\
& \begin{array}{l}
15000=P \\
\left(1+\frac{.04}{12}\right)^{30}
\end{array} \quad \begin{array}{l}
\$ 12,285.05 \\
\frac{15,000}{e^{2}}=P \quad P=12,280.97
\end{array} \\
& \begin{array}{l}
15000=P e^{.04 / 5)} \\
\text { Rover bl you at least need this much } \\
\text { money }
\end{array}
\end{aligned}
$$

4. What interest rate (compounded annually) is needed for a $\$ 4000$ deposit to grow to $\$ 5000$ in 3 years?

$$
\begin{aligned}
& 5000=4000\left(1+\frac{r}{1}\right) 3 \\
& \frac{5}{4}=(1+r)^{3} \\
& \sqrt[3]{\frac{5}{4}}=1+r \\
& \sqrt[3]{\frac{5}{4}}-1=r \quad 7.7 \% \\
& .077=r \quad
\end{aligned}
$$

5. a) Given a nominal rate of 6% per annam compounded continuously, compute the effective rate.
b) Given an effective rate of 6% per annum, compute the nominal rate compounded continuously.
a) Using $A=P e^{r t}$
$r=.06 \quad t=1 \quad P=$ anything effectiverate is a fer lyear

$$
\begin{aligned}
A & =P e^{.06} \\
& \approx P(1.06183)
\end{aligned}
$$

b) using $A=P e^{r t} \quad A=P(1.06) \quad t=1$

$$
P(1.06)=P e^{r .1}
$$

$$
\begin{aligned}
1.06 & =e^{r} \\
\ln 1.06 & =\ln e^{r} \quad \text { nominal } \\
\ln 1.06 & =r \quad \text { rate } \\
r & \approx .05826 \\
& \approx 5.83 \%
\end{aligned}
$$

