OBJECTIVES: 1) Calculate the radian measure of an angle.
2) Find the arc length of a circle and find the area of a sector of a circle.
3) Find the angular and linear speed of an object.

THE RADIAN MEASURE OF AN ANGLE:

Place the vertex of the angle at the center of a circle of radius r. Let s denote the length of the arc intercpeted by the angle.
$\theta=\frac{s}{r}$
The radian measure θ is the ratio of the arc length to the radius.

The lengths s and r have units that cancel out so θ is dimensionless but has title radians.

1) Determine the radian measure for the angle.
a)

$\theta=\frac{6}{3}=2$

b)

$\theta=\frac{48 \mathrm{in}}{2 \mathrm{ft}}=\frac{48 \mathrm{in}}{24 \mathrm{in}}$
$=2$ radians

RADIAN MEASURE:

In a circle, 1 radian is the measure of the central angle that interecepts an arc equal in length to the radius of the circle.

(a) 1 radian
2) Convert from radians to degrees or vice versa.
a) 120°
b) $\frac{\pi}{6}$
$120 \cdot \frac{\pi}{180}=\frac{2}{3} \pi$

$$
\frac{\pi}{6} \cdot \frac{180}{\pi}=30^{\circ}
$$

(b) 2 radians

(c) 3 radians
$\frac{\pi}{2}$ radians $=90^{\circ}$
$\frac{\pi}{180}$ radians $=1^{\circ}$

Quarter Circle:

$$
\begin{aligned}
& s=\frac{1}{4} \cdot 2 \pi r=\frac{1}{2} \pi r \\
& \theta=\frac{s}{r}=\frac{\frac{1}{2} \pi r}{r}=\frac{1}{2} \pi=\frac{\pi}{2}
\end{aligned}
$$

CONVERTING MEASURES:

$1^{\circ}=\frac{\pi}{180}$ radians
1 radian $=\frac{180}{\pi}$

3) Find the arc length on a circle with radius 4 in and angle 45°.

$$
\begin{aligned}
& 45^{\circ}=45 \cdot \frac{\pi}{180}=\frac{\pi}{4} \text { radians } \\
& S=r \theta=4 \cdot \frac{\pi}{4}=\pi \mathrm{in}
\end{aligned}
$$

4) Find the area of a sector when $r=\sqrt{3}$ and $\theta=30^{\circ}$.

$$
\begin{aligned}
& A=\frac{1}{2} r^{2} \theta \quad 30^{\circ}=30 \cdot \frac{\pi}{180}=\frac{\pi}{6} \\
& A=\frac{1}{2} \cdot 3 \cdot \frac{\pi}{6}=\frac{\pi}{4} v^{2}
\end{aligned}
$$

AREA OF SECTOR: $\quad A=\frac{1}{2} r^{2} \theta$

5) A sector has an area of $100 \mathrm{~cm}^{2}$ and a central angle of $\frac{1}{2}$ radians. Find the radius and the arc length.

$$
\begin{array}{lll}
100=\frac{1}{2} r^{2} \theta & 400=r^{2} & \theta=\frac{s}{r} \quad s=\theta r \\
\theta=\frac{s}{r}=5 & r= \pm 20 & s=\frac{1}{2} \cdot 20 \\
100=\frac{1}{2} r^{2} \cdot \frac{1}{2} & r=20 \mathrm{~cm} & \\
s=10 \mathrm{~cm}
\end{array}
$$

$$
100=\frac{1}{4} r^{2}
$$

APPLICATION: SPEEDS ON A WHEEL

ANGULAR SPEED:
ANGULAR SPEED: $\omega=\frac{\Delta \theta}{\Delta t} \quad$ Units: $\frac{\text { radians }}{\text { time }}$ LINEAR SPEED: $\quad v=\frac{\Delta d}{\Delta t} \quad$ Units: $\frac{i n, \mathrm{~cm}, \mathrm{f}+\ldots}{\text { time }}$
ANGULAR SPEED: $\omega=\frac{\Delta \theta}{\Delta t}$ Units: $\frac{\text { radians }}{\text { time }}$ LINEAR SPEED: $v=\frac{\Delta d}{\Delta t}$ Units: $\frac{i n, \mathrm{~cm}, f_{1}}{\text { time }}$
6) A CD rotates at 180 rpm (revolutions per minute). Calculate the angular speed and the linear speed for a point 6 cm from the center.

$$
\begin{aligned}
& \omega=\frac{180 \text { revolt }}{\text { minute }} \cdot \frac{2 \pi \text { radians }}{\text { revol. }}=\frac{360 \pi \text { radians }}{\min } \\
& V=r \omega \quad V=\frac{360 \pi}{\min } \cdot 6 \mathrm{~cm}=\frac{2160 \pi \mathrm{~cm}}{\min }
\end{aligned}
$$

EQUATION RELATING BOTH:

$$
\nu=r \omega \quad \text { or } \quad \omega=\frac{\nu}{r}
$$

7) A belt connects two spinning discs. If the radius of the larger is 15 cm , th e radius of the smaller is 5 cm and the angular velocity of the larger is 3000 rpm , find the angular velocity of the smaller.

