OBJECTIVES: 1) Derive the unit circle using special right triangles.
2) Complete a chart for the unit circle, from memory.
3) Use the unit circle to calculate trig functions of an angle.

DERIVING THE UNIT CIRCLE USING SPECIAL RIGHT TRIANGLES:

$A B C D$ is a square.

$$
\begin{aligned}
x^{2}+x^{2} & =c^{2} \\
2 x^{2} & =c^{2} \\
c & =\sqrt{2 x^{2}} \\
c & =x \sqrt{2} \quad \frac{x \sqrt{2} / 45}{45}+x
\end{aligned}
$$

$\triangle A B C$ is equilateral

x^{2} $\begin{aligned} x^{2}+b^{2} & =(2 x)^{2} \\ b^{2} & =4 x^{2}-x^{2} \\ b^{2} & =3 x^{2} \\ b & =\sqrt{3 x^{2}} \quad \frac{2 x}{60} \\ b & =x \sqrt{3}\end{aligned}$

USING A MNEUMONIC TO MEMORIZE THE UNIT CIRCLE:
1)

REFERENCE ANGLES: The reference angle associated with θ is the acute angle (with positive measure) formed by the x -axis (NOT the y -axis) and the terminal side of the angle.

The reference angle for 135° is $45^{\circ}\left[180^{\circ}-135^{\circ}=45^{\circ}\right]$.
Figure 4

The reference number for $\frac{5 \pi}{3}$ is $\frac{\pi}{3}\left[2 \pi-\frac{5 \pi}{3}=\frac{\pi}{3}\right]$.

The reference angle for 210° is $30^{\circ}\left[210^{\circ}-180^{\circ}=30^{\circ}\right]$.

The reference number for $-\frac{\pi}{4}$ is $\frac{\pi}{4}$.

Examples:
a) $\sin \left(-135^{\circ}\right)$

b) $\cot \left(120^{\circ}\right)$

$$
\begin{aligned}
& \cot \left(60^{\circ}\right)=\frac{1}{\tan \theta}=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{1}{2} \cdot \frac{2}{\sqrt{3}}=\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\
& \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \\
& \cot \left(60^{\circ}\right)=\frac{\sqrt{3}}{3} \\
& \cot \left(120^{\circ}\right)=-\frac{\sqrt{3}}{3}
\end{aligned}
$$

c) $\sin \left(-\frac{\pi}{6}\right)$
$\sin \left(\frac{\pi}{6}\right)$

$\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$
$\sin \left(-\frac{\pi}{6}\right)=\frac{-1}{2}$
d) $\csc \left(\frac{7 \pi}{4}\right)$

$$
\begin{aligned}
& \csc \left(\frac{\pi}{4}\right)=\frac{1}{\sin \left(\frac{\pi}{4}\right)}=\frac{1}{\frac{\sqrt{2}}{2}} \\
& \csc \left(\frac{\pi}{4}\right)=\frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{2 \sqrt{2}}{2}=\sqrt{2} \\
& \csc \left(\frac{7 \pi}{4}\right)=-\sqrt{2}
\end{aligned}
$$

