OBJECTIVES: 1) Use the remaining Pythagorean identities to simplify trig expressions.
2) Use opposite angle identities to calculate values of trig functions.

TRIG FUNCTIONS OF REAL NUMBERS: DEFINITIONS
$\cos t=x \quad \sin t=y \quad \tan t=\frac{y}{x}$
$\sec t=\frac{1}{x} \quad \csc t=\frac{1}{y} \quad \cot t=\frac{x}{y}$

1) Simplify: $\frac{u}{\sqrt{u^{2}-1}}$ by substituting $u=\sec \theta$
$=\frac{\sec \theta}{\sqrt{\sec ^{2} \theta-1}}$
(Assume $0<\theta<\frac{\pi}{2}$.)
$\begin{aligned} & \\ &=\frac{\sqrt{\sec \theta} \theta}{\sqrt{\tan ^{2} \theta}} \\ &= \frac{\sec \theta}{|\tan \theta|} \\ &==\frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta} \\ &=\frac{1}{\sin \theta} \\ &=\csc \theta\end{aligned}$
2) Simplify: $\frac{\sec t+\sec t \tan ^{2} t}{\cot ^{2} t-\csc ^{2} t}$

$$
\begin{aligned}
& \frac{\sec t\left(1+\tan ^{2} t\right)}{\cot ^{2} t-\csc ^{2} t} \Rightarrow \tan ^{2} t+1=\sec ^{2} t \\
& =\frac{\sec t\left(\sec ^{2} t\right)}{-1} \\
& =-\cot ^{2} t=1 \\
& =-\sec ^{3} t
\end{aligned}
$$

EVEN FUNCTION:

$f(-t)=f(t)$ for all t in the domain of f

Symmetric about the y-axis

PYTHAGOREAN IDENTITIES:

1) $\sin ^{2} \theta+\cos ^{2} \theta=1 \quad \sin ^{2} t+\cos ^{2} t=1$
2) $\left.1+\cot ^{2} t=\csc ^{2} t 3\right) \tan ^{2} t+1=\sec ^{2} t$

ODD FUNCTION:

$f(-t)=-f(t)$
for all t in the domain of f

Symmetric about the origin.

OPPOSITE ANGLE IDENTIES (PROVE IT: PART III)

$\cos (-t)=\cos (t) \quad$ (cosine is an even function)
$\sin (-t)=-\sin (t) \quad$ (sine is an odd function)
$\tan (-t)=-\tan (t) \quad$ (tangent is an odd function)

Using the opposite angle identities:
3) If $\cos m=-.45$ find $\cos (-m)$.
$\cos (-m)=-.45$
4) If $\tan p=1.2$ find $\tan (-p)$
$\tan (-p)=-1.2$
5) If $\cos g=.36$ find $\cos ^{2}(-g)+\sin ^{2}(-g) \cdot \quad \cos ^{2}(-g)+\sin ^{2}(-g)=1$

PERIODIC FUNCTION:

A function that a periodic function is a function repeats its values in regular intervals or periods.

PERIODICITY:

Every 2π represents a complete

$$
\cos (t+2 \pi k)=\cos (t) \quad \sin (t+2 \pi k)=\sin (t)
$$ trip around the unit circle.

6) $\cos (-19 \pi)$
7) $\sin \left(\frac{5 \pi}{2}\right)$

$$
\left.\begin{array}{rl}
\cos (-19 \pi) & =\cos (-\pi-2 \pi \cdot 9) \\
& =\cos (-\pi)
\end{array}\right)=\cos (\pi) \quad 1
$$

$$
\begin{aligned}
\sin \left(\frac{5 \pi}{2}\right) & =\sin \left(\frac{1}{2} \pi+2 \pi\right) \\
& =\sin \left(\frac{1}{2} \pi\right)=1
\end{aligned}
$$

