OBJECTIVES: 1) Use the sum-to-product/product-to-sum formulas to rewrite an expression.

$$
\begin{array}{cc}
\text { THE SUM-TO-PRODUCT/PRODUCT-TO-SUM FORMULAS } \\
\sin (A+B)+\sin (A-B)=2 \sin A \cos B & \cos (A+B)+\cos (A-B)=2 \cos A \cos B \\
\sin (A+B)-\sin (A-B)=2 \cos A \sin B & \cos (A+B)-\cos (A-B)=-2 \sin A \sin B
\end{array}
$$

*These formulas are proven in Part 8 of your Prove It Notes.

USING THE SUM TO PRODUCT FORMULAS

1) Rewrite the product, $\sin 4 \theta \sin 3 \theta$, as a sum/difference.

$$
\text { Use } \begin{aligned}
\cos (A+B) & -\cos (A-B)=-2 \sin A \sin B \\
\sin 4 \theta \sin 3 \theta & =-\frac{1}{2}(\cos (4 \theta+3 \theta)-\cos (4 \theta-3 \theta)) \\
& =-\frac{1}{2}(\cos 7 \theta-\cos \theta)
\end{aligned}
$$

2) Rewrite the product, $\cos 3 \theta \cos 5 \theta$, as a sum/difference.

$$
\text { use } \cos (A+B)+\cos (A-B)=2 \cos A \cos B
$$

$$
\begin{aligned}
& \frac{1}{2}(\cos (3 \theta+5 \theta)+\cos (3 \theta-5 \theta))=\cos 3 \theta \cos 5 \theta \\
& \frac{1}{2}(\cos (8 \theta)+\cos (-2 \theta)) \\
& \frac{1}{2}(\cos (2 \theta)+\cos (2 \theta))
\end{aligned}
$$

3) Rewrite the product, $\cos 2 \theta \sin 6 \theta$, as a sum/difference.

$$
\begin{aligned}
& \sin 6 \theta \cos 2 \theta \\
& \sin (A+B)+\sin (A-B)=2 \sin A \cos B \\
& \frac{1}{2}(\sin (6 \theta+2 \theta)+\sin (6 \theta-2 \theta)=\sin 6 \theta \cos 2 \theta \\
& \frac{1}{2}(\sin 8 \theta+\sin 4 \theta)=\sin 6 \theta \sin 2 \theta
\end{aligned}
$$

$$
\begin{gathered}
\sin (A+B)-\sin (A-B)=2 \cos A \sin B \\
\frac{1}{2}(\sin (2 \theta+6 \theta)-\sin (2 \theta-6 \theta))=\cos 2 \theta \sin 6 \theta \\
\frac{1}{2}(\sin 8 \theta-\sin (-4 \theta))=\cos 2 \theta \sin 6 \theta \\
\frac{1}{2}(\sin 8 \theta+\sin 4 \theta)=\cos 2 \theta \sin 6 \theta
\end{gathered}
$$

4) Rewrite the sum, $\cos 11 \theta+\cos 3 \theta$, as product.
use

$$
\begin{aligned}
& \cos (A+B)+\cos (A-B)=2 \cos A \cos B \\
& (A+B)+(A-B)=2 A \\
& (A+B)-(A-B)=2 B \\
& 11 \theta+3 \theta=2 A \\
& 14 \theta=2 A \\
& A=7 \theta
\end{aligned} \quad \begin{gathered}
\cos 11 \theta+\cos 3 \theta=2 \cos 7 \theta \cos 4 \theta \\
(11 \theta
\end{gathered}
$$

5) Rewrite the difference, $\sin 8 \theta-\sin 2 \theta$, as a product.
use

$$
\begin{aligned}
& \sin (A+B)-\sin (A-B)=2 \cos A \sin B \\
& 8 \theta+2 \theta=2 A \\
& A=5 \theta \\
& 8 \theta-2 \theta=2 B \\
& B=3 \theta
\end{aligned}
$$

6) Find the exact value of $\cos \frac{5 \pi}{12} \sin \frac{\pi}{12}$.
use $\quad \sin (A+B)-\sin (A-B)=2 \cos A \sin B$

$$
\begin{aligned}
\cos \frac{5 \pi}{12} \sin \frac{\pi}{12} & =\frac{1}{2}\left(\sin \frac{\pi}{2}-\sin \frac{\pi}{3}\right) \\
& =\frac{1}{2}\left(1-\frac{\sqrt{3}}{2}\right)=\frac{1}{2}-\frac{\sqrt{3}}{4}
\end{aligned}
$$

7) Find the exact value of $\sin 105^{\circ} \sin ^{\circ} 15$.
use

$$
\begin{aligned}
& \cos (A+B)-\cos (A-B)=-2 \sin A \sin B \\
& \sin 105 \sin 15=\frac{-1}{2}\left(\cos 120^{\circ}-\cos 90^{\circ}\right) \\
&=\frac{-1}{2}\left(\frac{-1}{2}-0\right) \\
&=\frac{1}{4}
\end{aligned}
$$

