\qquad Period: \qquad
\#1) I CAN SOLVE A SYSTEM OF LINEAR EQUATIONS (W/O A CALC) AND ANY REAL WORLD APPLICATION OF THEM.
a) Sterling Silver is 92.5% pure silver. How many grams of Sterling Silver must be mixed to a 90% Silver alloy to obtain 500 grams of a 91% Silver alloy?
\#2) I CAN USE INVERSE MATRICES TO SOLVE A SYSTEM OF EQUATIONS AND SHOW THE APPROPRIATE WORK!
a) Solve the system: $\left\{\begin{array}{l}3 x-9 y=2 \\ 9 x+18 y=1\end{array}\right.$

$$
A=\left[\begin{array}{cc}
3 & -9 \\
9 & 18
\end{array}\right] \quad B=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad A^{-1} B=\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{9}
\end{array}\right] \quad\left(\frac{1}{3},-\frac{1}{9}\right)
$$

\#3) I CAN USE ROW REDUCED ECHELON FORM TO SOLVE A SYSTEM AND SHOW THE APPROPRIATE WORK!
a) Solve the system: $\left\{\begin{array}{l}5 x-8 y=4 \\ 2 x-4 y=1\end{array}\right.$

$$
A=\left[\begin{array}{ccc}
5 & -8 & 4 \\
2 & -4 & 1
\end{array}\right] \quad \operatorname{rref} A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 / 4
\end{array}\right]\left(2, \frac{3}{4}\right)
$$

\#4) I CAN USE DETERMINANTS AND CRAMER'S RULE TO SOLVE A SYSTEM AND SHOW THE APPROPRIATE WORK!
a) Solve the system: $\begin{aligned} \begin{cases}x-4 y=32 \\ 3 x+y=5\end{cases} & D_{x}=\left|\begin{array}{cc}32 & -4 \\ 5 & 1\end{array}\right| \\ \operatorname{det}\left[\begin{array}{cc}1 & -4 \\ 3 & 1\end{array}\right]=13 & D_{y}=\left|\begin{array}{ll}1 & 32 \\ 3 & 5\end{array}\right| \\ x=\frac{D_{x}}{D} & y=\frac{D_{1}}{D} \\ x=\frac{52}{13} & y=\frac{-91}{13}\end{aligned}$
\#5) I CAN DISCERN BETWEEN A CONSISTENT/INCONSISTENT AND DEPENDENT/INDEPENDENT SYSTEM OF EQUATIONS.
Determine if the system is consistent or inconsistent. If applicable, state whether the system is dependent/independent.
a) $\left\{\begin{array}{l}8 x-12 y=24 \\ 6 x-9 y=18\end{array}\right.$
b) $\left\{\begin{array}{l}11 x-5 y=-38 \\ 9 x+2 y=-25\end{array}\right.$
c) $\left\{\begin{array}{l}4 x-6 y=11 \\ 6 x-9 y=18\end{array}\right.$
consistent
1
consistent
inconsistent
dependent
(infinite solutions)
(no solution)
\#6) I CAN WRITE THE SOLUTIONS TO A DEPENDENT, CONSISTENT SYSTEM IN TERMS OF ONE VARIABLE
a) Solve the system: $\left\{\begin{array}{l}3 z+y-1=0 \\ x+y=3 \\ 2 y+3 z+x-4=0\end{array}\right.$

$$
A=\left[\begin{array}{llll}
0 & 1 & 3 & 1 \\
1 & 1 & 0 & 3 \\
1 & 2 & 3 & 4
\end{array}\right] \quad \operatorname{rref} A=\left[\begin{array}{cccc}
1 & 0 & -3 & 2 \\
0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

In terms of z :

$$
\begin{aligned}
& y+3 z=1 \quad \Rightarrow \quad y=-3 z+1 \\
& x-3 z=2 \quad x=3 z+2
\end{aligned}
$$

$$
(3 z+2,-3 z+1, z)
$$

\#7) I CAN MULTIPLY MATRICES WITHOUT A CALCULATOR AND I KNOW WHEN I CAN'T MULTIPLY MATRICES.
Perform the indicated operation:
a) $\left[\begin{array}{rr}3 & -1 \\ 4 & -2\end{array}\right]\left[\begin{array}{rr}4 & 1 \\ -2 & 5\end{array}\right]$
b) $\left[\begin{array}{c}x \\ y \\ -z\end{array}\right]\left[\begin{array}{ll}2 a & b\end{array}\right] \quad 3 \times 1 \cdot 1 \times 2$

$$
\left[\begin{array}{ll}
3 \cdot 4+-1 \cdot-2 & 3.1+-1.5 \\
4.4+-2 .-2 & 4.1+-2.5
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
14 & -2 \\
20 & -6
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
2 a x & b x \\
2 a y & b y \\
-2 a z & -b z
\end{array}\right]
$$

\#8) I CAN SOLVE A NONLINEAR SYSTEM OF EQUATIONS.
Solve the systems:
a) $\left\{\begin{array}{l}\frac{2}{x^{2}}+\frac{3}{y^{2}}=-16 \\ \frac{3}{x^{2}}-\frac{2}{y^{2}}=28\end{array}\right.$

Let $a=\frac{1}{x^{2}} \quad b=\frac{1}{y^{2}}$
b) $\left\{\begin{array}{l}y=e^{x} \\ y=3 e^{2 x}-2 \leftarrow y=3\left(e^{x}\right)^{2}-2\end{array}\right.$

$$
\begin{aligned}
& y=3 y^{2}-2 \\
& 3 y^{2}-y-2=0 \\
& (3 y+2)(y-1)=0 \\
& y=\frac{-2}{3} \quad y=1
\end{aligned}
$$

$$
e^{x}=y
$$

$$
\begin{aligned}
& \text { If } y=-\frac{2}{3} \\
& \frac{-2}{3}=e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 a+3 b=-16 \\
3 a-2 b=28
\end{array}\right. \\
& A=\left[\begin{array}{ccc}
2 & 3 & -16 \\
3 & -2 & 28
\end{array}\right] \operatorname{rrefA} \\
& a=4 \quad b=-8 \\
& \frac{1}{x^{2}}=4 \quad \frac{1}{y^{2}}=-8 \\
& x= \pm \frac{1}{2} \quad \int_{n o t r}
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
2 & 3 & -16 \\
3 & -2 & 28
\end{array}\right] \operatorname{rref} A=\left[\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & -8
\end{array}\right]
$$

not real!

no real solutions to this system! no real

$$
e^{x}=1
$$

$$
\ln 1=x
$$

$$
x=0
$$

\#9) I CAN WRITE PARTIAL FRACTIONS WITH REPEATED LINEAR FACTORS AND IRREDUCIBLE QUADRATIC FACTORS.
Rewrite the fraction as the sum of two simpler fractions:
a) $\frac{-3 x+11}{x^{2}-6 x+9}=\frac{-3 x+11}{(x-3)^{2}}=\frac{A}{x-3}+\frac{B}{(x-3)^{2}}$

$$
-3 x+11=A(x-3)+B
$$

let $x=3$

$$
\begin{gathered}
-3(3)+11=B \\
B=2
\end{gathered}
$$

$-3=A$

$$
\frac{-3}{x-2}+\frac{2}{(x-3)^{2}}
$$

b) $\frac{-x^{2}-5 x-1}{x^{3}-2 x^{2}+x-2}=\frac{-x^{2}-5 x-1}{x^{2}(x-2)+1(x-2)}$

$$
\begin{aligned}
& \frac{-x^{2}-5 x-1}{\left(x^{2}+1\right)(x-2)}=\frac{A x+B}{x^{2}+1}+\frac{C}{x-2} \\
& -x^{2}-5 x-1=(A x+B)(x-2)+C\left(x^{2}+1\right)
\end{aligned}
$$

let $x=2$

$$
\begin{aligned}
-4-10-1 & =c(5) \\
-15 & =5 c \\
c & =-3
\end{aligned}
$$

Equate coefficients:

$$
\begin{aligned}
x^{2}:-1 & =A+C \\
-1 & =A-3 \\
A & =2
\end{aligned}
$$

constant:

$$
\begin{aligned}
& -1=-2 B+C \\
& -1=-2 B-3
\end{aligned}
$$

$$
B=-1
$$

$$
\frac{2 x-1}{x^{2}+1}-\frac{3}{x-2}
$$

\#10) I CAN SOLVE A SYSTEM OF INEQUALITIES.
Graph the solution to the system of inequalities. Make sure to show the points of intersection.

\#11) I CAN USE LINEAR PROGRAMMING TO FIND THE BEST POSSIBLE OUTCOME FOR A GIVEN SET OF CONSTRAINTS.
a) You are taking a test in which items of type A are worth 10 points and items of type B are worth 15 points. It takes 3 minutes to answer each type A question and 6 minutes to answer each type B question. Total time allowed is 60 minutes, and you may not answer more than 16 questions. However, you must answer at least 2 of each type of question. Assuming all of your answers are correct, how many of each type should you answer in order to get the best score?

$$
\begin{aligned}
& X=\text { of type } A \text { es Corner Pts: } \\
& y=\# \text { of type } B Q s \quad A(2,9)-\left\{\begin{array}{l}
3 x+6 y=60 \\
x=2
\end{array}\right. \\
& \text { Obj. Quantity: } \\
& 10 x+15 y \\
& \text { Constraints: } \\
& 3 x+2 y \leq 60 \\
& x+y \leq 16 \\
& x \geq 2 \\
& y \geq 2 \\
& \text { Test Corner Pts: } \\
& A(2,9) 155 \text { pts } C(14,2) 170 \text { pts } \\
& B(12,4) 180 \text { pts } D(2,2) 50 \text { pts }
\end{aligned}
$$

Max of 180 pts when answering 12 type $A \leq 4$ type B

- MAKE SURE THESE QUESTIONS SEEM EASY PEASY LEMON SQUEEZY!
- REVIEW YOUR HOMEWORK
- REVIEW YOUR NOTES
- REVIEW UNTIL YOUR BRAIN HURTS!

