\qquad
\qquad Period: \qquad
\#1) I CAN USE LONG DIVISION/SYNTHETIC DIVISION TO DIVIDE POLYNOMIALS.
\#2) I CAN FACTOR POLYNOMIALS OF THE FORM X ${ }^{N}-A^{N}$ INTO THE PRODUCT OF (ONLY) TWO FACTORS.
a) $x^{4}-81$

$$
(x-3)\left(x^{3}+3 x^{2}+9 x+27\right)
$$

\#3) I CAN USE THE REMAINDER THEOREM TO EVALUATE A FUNCTION AT A GIVEN VALUE OF X.
a) $4 x^{3}-7 x^{2}+8 x+2$ at $x=2$
b) $3 x^{4}-5 x^{3}+3 x^{2}-2 x+5$ at $x=-3$

$$
2 \begin{array}{rrrr}
4 & -7 & 8 & 2 \\
8 & 2 & 20 \\
4 & 1 & 10 & 22
\end{array}
$$

$-3 \left\lvert\, \begin{array}{lllll}3 & -5 & 3 & -2 & 5 \\ -9 & 42 & -135 & 411 \\ 3 & -14 & 45 & -137 & 416\end{array}\right.$

$$
f(-3)=416
$$

\#5) I CAN USE THE FACTOR THEOREM TO SOLVE A POLYNOMIAL EQUATION OR WRITE ONE.

a) Solve the equation $x^{3}-3 x^{2}+12 x-10=0$ given that one root is $1+3 i$.

b) Find the equation of a polynomial function of least degree with integer coefficients with the following roots: -4 of multiplicity 2 and $-2 i$.

$$
\begin{aligned}
(x+4)^{2}(x+2 i)(x-2 i) & =0 \quad\left(x^{2}+4\right)\left(x^{2}+8 x+16\right)=x^{4}+8 x^{3}+16 x^{2}+4 x^{2}+32 x+64 \\
x^{2}+4 & (x+4)^{2}=x^{2}+8 x+16 \quad f(x)=x^{4}+8 x^{3}+20 x^{2}+32 x+64
\end{aligned}
$$

$$
\begin{aligned}
& (x-3) \\
& 3 \begin{array}{llll}
1 & 0 & 0 & 0 \\
3 & -81 \\
1 & 9 & 27 & 81 \\
1 & 3 & 9 & 27 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } \frac{x^{4}+3 x^{2}+1}{x^{2}-2 x+3} x^{2}+2 x+4+\frac{2 x-11}{x^{2}-2 x+3} \\
& \text { b) } \frac{2 x^{3}+4 x^{2}+7 x+4}{x+3} \\
& x^{2}-2 x+3 \frac{x^{2}+2 x+4}{\sqrt{x^{4}+0 x^{3}+3 x^{2}+0 x+1}} \\
& -\left(x^{4}-2 x^{3}+3 x^{2}\right) \\
& 2 x^{3}+0 x^{2}+0 x \\
& \frac{-\left(2 x^{3}-4 x^{2}+6 x\right)}{4 x^{2}-6 x+1}-\left(4 x^{2}-8 x+12\right) \quad 2 x-11 \\
& 2 x^{2}-2 x+13-\frac{35}{x+3}
\end{aligned}
$$

\#6) I CAN (QUICKLY) WRITE A QUADRATIC EQUATION WHEN GIVEN ITS ROOTS.
a) Write the quadratic equation with a root of $r_{1}=3-2 i$.

$$
x^{2}-6 x+13=0
$$

\#7) I CAN USE COMPLEX NUMBERS TO WRITE THE QUOTIENT OF TWO COMPLEX NUMBERS IN STANDARD FORM.
a) $\frac{4-2 i}{3 i} \cdot \frac{i}{i}=\frac{4 i-2 i^{2}}{-3}=\frac{4 i+2}{-3}$
b) $\frac{5+3 i}{7-2 i} \cdot \frac{7+2 i}{7+2 i}$

$$
\frac{2+4 i}{-3}
$$

$$
\frac{35+10 i+21 i+6 i^{2}}{49-4 i^{2}}=\frac{29+31 i}{53}
$$

\#8) I CAN PERFORM OPERATIONS ON COMPLEX NUMBERS AND SIMPLIFY POWERS OF i.
a) $(3-2 i)(1+4 i)$
$3+12 i-2 i-8 i^{2}$
$11+10 i$
b) i^{25}
c) i^{39}
d) i^{3002}
$=\left(i^{2}\right)^{12} i$
$=\left(i^{2}\right)^{19} i$
$=\left(i^{2}\right)^{1501}$
$=i$
$=-i$
$=-1$
\#9) I CAN USE THE RATIONAL ROOTS THEOREM TO LIST ALL POSSIBLE RATIONAL ROOTS OF A POLYNOMIAL.
a) List all possible rational zeros of the function $f(x)=6 x^{3}-8 x^{2}-9 x+12$.

$$
\frac{p}{a}=\frac{ \pm 1,2,3,4,6,12}{ \pm 1,2,3,6}= \pm 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, 2,2 / 3,3,3 / 2,4,4 / 3,6,12
$$

\#10) I CAN USE DECARTE'S RULE OF SIGNS TO PREDICT ALL POSSIBLE COMBINATIONS OF ROOTS.
List all possible combinations of roots:
a) $f(x)=5 x^{4}-7 x^{3}+8 x^{2}+4 x-3$
Max 3 positive roots
$f(-x)=5 x^{4}+7 x^{3}+8 x^{2}-4 x-3$
Max I neg root

+	-	i
3	1	0
1	1	2

b) $f(x)=2 x^{5}+x^{4}-3 x^{3}-2 x^{2}-4 x+5$
$\operatorname{Max} 2$ positive roots

\#11) I CAN USE THE UPPER AND LOWER BOUND THEOREM TO FIND NARROW DOWN ZEROS OF POLYNOMIALS.
Verify the upper and lower bounds:
a) $f(x)=x^{3}+5 x^{2}+3 x-2 \quad$ upper bound: 1 lower bound: -6

\#12) I CAN FIND ZEROS OF POLYNOMIALS BY FACTORING.
a) $f(x)=x^{4}+2 x^{2}-8$

$$
\begin{aligned}
& x^{4}+4 x^{2}-2 x^{2}-8=0 \\
& x^{2}\left(x^{2}+4\right)-2\left(x^{2}+4\right)=0 \\
& \left(x^{2}-2\right)\left(x^{2}+4\right)=0 \\
& x= \pm 2, \pm 2 i
\end{aligned}
$$

b) $f(x)=x^{4}-4 x^{3}+3 x^{2}+8 x-16$ if one factor is $x^{2}-x-4$

$$
x ^ { 2 } - x - 4 \longdiv { x ^ { 2 } - 3 x + 4 } \sqrt { x ^ { 4 } - 4 x ^ { 3 } + 3 x ^ { 2 } + 8 x - 1 6 }
$$

$$
-\frac{\left(x^{4}-x^{3}-4 x^{2}\right)}{-3 x^{3}+7 x^{2}+8 x}
$$

$$
x^{2}-3 x+4=0
$$

$$
-\left(-3 x^{3}+3 x^{2}+12 x\right)
$$

$$
\frac{3 \pm \sqrt{9-4(4)}}{2}
$$

$$
\begin{array}{r}
x^{2}-x-4=0 \\
x=\frac{1 \pm \sqrt{1-4(-4)}}{2}
\end{array}
$$

$$
4 x^{2}-4 x-16
$$

$$
x=\frac{3 \pm \sqrt{-7}}{2}
$$

$$
x=\frac{1 \pm \sqrt{17}}{2} \quad \begin{gathered}
\text { Solutions: } \frac{1 \pm \sqrt{17}}{2}, \frac{3 \pm i \sqrt{7}}{2} \\
\end{gathered} x=\frac{3 \pm i \sqrt{7}}{2}
$$

\#13) I CAN FIND ZEROS OF POLYNOMIALS WHEN GIVEN A FACTOR OF THE POLYNOMIAL.
a) Find all zeros of the polynomial $f(x)=x^{4}+2 x^{3}-3 x^{2}+2 x-4$ if one factor of $f(x)$ is $(x-i)$. $\pm i$ roots, $\therefore x^{2}+1$ is a factor

$$
\begin{aligned}
& x^{2}+0 x+1 \begin{array}{c}
x^{2}+2 x-4 \\
\left.\frac{\left(x^{4}+2 x^{3}-3 x^{2}+2 x-4\right.}{3}+0 x^{2}\right) \\
2 x^{3}-4 x^{2}+2 x \\
\frac{\left(2 x^{3}+0 x^{2}+2 x\right)}{-4 x^{2}-4} \\
-\frac{\left(-4 x^{2}-4\right)}{0}
\end{array} x=\frac{x^{2}+2 x-4=0}{2} \\
& \frac{x=\sqrt{4-4(-4)}}{2} \\
& \frac{x+\sqrt{20}}{2} \\
& x=-1 \pm \sqrt{5}
\end{aligned}
$$

