$\qquad$ Period: $\qquad$
\#1) I CAN GRAPH EXP. AND LOG FUNCTIONS USING TRANSFORMATIONS AND DETERMINE THEIR DOMAIN AND RANGE. Sketch the graph. Show all important information (intercepts, asymptotes, domain/range).
a) $y=2^{-x+1} 2^{-(x-1)}$
b) $y=-e^{x-1}+4$
c) $y=-\log _{2}(x)$
$D:(-\infty, \infty)$
$R_{1}(0, \infty)$${\underset{F}{y}}_{-(x-1)}^{F_{R_{1}}}$
$\left(-1, \frac{1}{2}\right) \rightarrow\left(\begin{array}{l}F_{y} \\ \left(1, \frac{1}{2}\right)\end{array}\left(\begin{array}{l}R_{1} \\ \left(2, \frac{1}{2}\right)\end{array}\right.\right.$
$(0,1) \rightarrow(0,1) \quad(1,1)$
$(1,2) \rightarrow(-1,2)(0,2)$
$D:(-\infty, \infty) \mathcal{F}_{F_{x}} R_{R_{1}}$ R: $(-\infty, 4)$
$\left(-1, \frac{1}{e}\right) \rightarrow\left(\begin{array}{c}R_{1}, F_{x} \\ \left(0,-\frac{1}{e}\right)\end{array}\left(\begin{array}{c}U_{4} \\ \left(0,4-\frac{1}{e}\right)\end{array}\right.\right.$
$(0,1) \rightarrow(1,-1)(1,3)$
$(1, e) \rightarrow(2,-e)(2,4-e)$
$D:(0, \infty)$
$R:(-\infty, \infty)$
$\left(-1, \frac{1}{2}\right) \rightarrow\left(\frac{1}{2},-1\right)\left(\frac{1}{2}, 1\right)$
$(0,1) \rightarrow(1,0) \quad(1,0)$
$(0,1) \rightarrow(1,0) \quad(1,0)$
$(1,2) \rightarrow(2,1) \quad(2,-1)$


Asymp: $x=0$
$x$ int: $(1,0)$
$y$ int: none
$0=-e^{x-1}+4$
$e^{x-1}=4$
$\ln 4=x-1$
d) $y=\ln (x+2)-3$
$2^{x}$
$\begin{array}{lll}D:(-2, \infty) & \varlimsup_{R}(-\infty, \infty) & L_{2} \\ L_{2} & D_{3}\end{array}$
$\begin{array}{lll}R:(-\infty, \infty) \\ \left.-1, \frac{1}{e}\right) \rightarrow\left(\frac{1}{e},-1\right) & L_{2} & D_{3} \\ \left(-2+\frac{1}{e}-4\right)\end{array}$
$(0,1) \rightarrow(1,0) \quad(-1,-3)$
$(1, e) \rightarrow(e, 1) \quad(-2+e,-2)$

\#Z) I CAN EVALUATE A VARIETY OF LOGARITHMIC AND EXPONENTIAL EXPRESSIONS.
Evaluate the following:
a) $\log _{5} 0.2$
b) $\log _{\frac{1}{2}} 64$
$\log _{5} \frac{1}{5}$
$\log _{\frac{1}{2}} 2^{6}=$ ?
$\log _{5} 1-\log _{5} 5$
$0-1$
$\left(2^{-1}\right)^{?}=2^{6}$
c) $\begin{gathered}3 \log 1 \\ 3.0 \\ 0\end{gathered}$
d) $\left(\frac{27}{16}\right)^{-\frac{2}{3}}$
$\left(\frac{16}{27}\right)^{2 / 3}$
$\frac{\left(2^{4}\right)^{2 / 3}}{\left(3^{3}\right)^{2 / 3}}=\frac{2^{8 / 3}}{9}=\frac{\sqrt[3]{256}}{9}$

## \#3) I CAN THINK OUTSIDE THE BOX!

Given $\log _{b} 2=A, \log _{b} 5=B$, and $\log _{b} 7=C$, evaluate the following:
a) $\log _{b} 70$
b) $\log _{b}(\sqrt[3]{5})$
c) $\log _{b} \sqrt{2.5}$
$\log _{6} 2.5 .7$
$\log _{b} 2+\log _{b} 5+\log _{b} 7$
$A+B+C$
$\log _{b} 5^{\frac{1}{3}}$
$\log _{b}\left(\frac{5}{2}\right)^{\frac{1}{2}}$
$\frac{1}{2} \log _{b} \frac{5}{2}$
$\frac{\frac{1}{2}\left(\log _{b} 5-\log _{b} 2\right)}{\frac{1}{2}(B-A)}$

## \#4) I CAN SOLVE A VARIETY OF EXPONENTIAL EQUATIONS AND INEQUALITIES.

Solve for $x$ :
a) $x^{-\frac{3}{2}}=27$
$\left(x^{-\frac{3}{2}}\right)^{-2 / 3}=\left(3^{3}\right)^{-2 / 3}$
$\begin{aligned} x & =3^{-2} \\ x & =\frac{1}{9}\end{aligned}$
b) $\left(\frac{1}{9}\right)^{2 x-5}=81^{x+3}$
$\left(3^{-2}\right)^{2 x-5}=\left(3^{4}\right)^{x+3}$
$-4 x+10=4 x+12$
$8 x=-2$
$x=\frac{-1}{4}$

$$
\begin{aligned}
4^{6 x+2} & =9^{5 x-3} \\
\ln 4^{6 x+2} & =\ln 9^{5 x-3} \\
(6 x+2) \ln 4 & =(5 x-3) \ln 9 \\
6 x \ln 4+2 \ln 4 & =5 x \ln 9-3 \ln 9 \\
6 x \ln 4-5 x \ln 9 & =-2 \ln 4-3 \ln 9 \\
x(6 \ln 4-5 \ln 9) & =-2 \ln 4-3 \ln 9
\end{aligned}
$$

d) $5<e^{3 x-2}<8$
$\ln 5<\ln e^{3 x-2}<\ln 8$
$\ln 5<3 x-2<\ln 8$
$\ln 5+2<3 x<\ln 8+2$
$\frac{2+\ln 5}{3}<x<\frac{2+\ln 8}{3}$
$x=\frac{-2 \ln 4-3 \ln 9}{6 \ln 4-5 \ln 9}$
interval notation:
$\left(\frac{2+\ln 5}{3}, \frac{2+\ln 8}{3}\right)$
e) $5^{3 x-4}<e^{7 x-2}$
f) $2^{x+4}=3 e^{4 x+5}$
g) $9=\frac{20}{1-e^{-2 x}}$
h) $e^{2 x}-5 e^{x}+6=0$
$9\left(1-e^{-2 x}\right)=20$
let $t=e^{x}$
$-9 e^{-2 x}=20-9$
$t^{2}-5 t+6=0$
$-9 e^{-2 x}=11$
$(t-3)(t-2)=0$
$t=3$, 2
$x \ln 2-4 x=5+\ln 3-4 \ln 2$
$e^{-2 x}=\frac{-11}{9}$
$\begin{aligned}-2 x= & \ln \left(\frac{-11}{a}\right) \\ & \left(\begin{array}{l}\text { notrea } \\ \text { no Solution! }\end{array}\right.\end{aligned}$

## \#5) I CAN SOLVE A VARIETY OF LOGARITHMIC EQUATIONS AND INEQUALITIES.

Solve for $x$ :
a) $x=\ln e^{5}$

b) $\ln x=3 e$
$x=e^{3 e}$
c) $\log _{10}\left[\log _{2}\left(\log _{7} x\right)\right]=0$
d) $10^{\log (5 x)}=3$

$$
\begin{gathered}
\log _{2}\left(\log _{7} x\right)=1 \\
\log _{7} x=2
\end{gathered}
$$

$$
x=\frac{3}{5}
$$

e) $\log _{2}(x+3)-1=\log _{2}(x-1)$ $\log _{2}(x+3)-\log _{2}(x-1)=1$
$\log _{2} \frac{(x+3)}{(x-1)}=1$
$\frac{x+3}{x-1}=2$
$x+3=2(x-1)$
$x+3=2 x-2$
$x=5$

$\log _{6}(x-1)(x+2)=\frac{1}{3} \cdot 3$
Domain: $x>1$

$$
\log _{6}\left(x^{2}+x-2\right)=1
$$

$$
x^{2}+x-2=6
$$

$$
x^{2}+x-8=0
$$

$$
x=\frac{-1 \pm \sqrt{1-4(-8)}}{2}=\frac{-1 \pm \sqrt{33}}{2}
$$

$$
x=\frac{-1+\sqrt{33}}{2}
$$

$$
\frac{-17 \sqrt{33}}{2}
$$

g) $\frac{\log (2 x+3)}{\log (x)}=\log _{4} 16$

Domain: $x>0$

$$
\begin{gathered}
\frac{\log (2 x+3)}{\log (x)}=2 \\
\log (2 x+3)=2 \log (x) \\
\log (2 x+3)=\log x^{2} \\
x^{2}-2 x-3=0 \\
(x-3)(x+1)=0 \\
x=3, \\
x=3
\end{gathered}
$$

## \#6) I CAN SOLVE A VARIETY OF EXPONENTIAL $\xi$ LOGARITHMIC APPLICATIONS. (USE A CALCULATOR)

a) Easy: $\$ 15,000$ is deposited into an account that pays $6.25 \%$ annual interest, compounded weekly. Find the balance after 7 years. $\quad A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
A=15000\left(1+\frac{.0625}{5^{2}}\right)^{52(7)} \quad A=23.226 .35 \quad \$ 23,226.35
$$

b) How much must you deposit into an account that pays $5.75 \%$ interest, compounded monthly, to have a balance of $\$ 20,000$ after 5 years?

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& 20,000=P\left(1+\frac{.0575}{12}\right)^{12.5} \quad P=\frac{20,000}{\left(1+\frac{.0575}{12}\right)^{60}}
\end{aligned}
$$

$$
\begin{gathered}
P=15,013.03589 \\
\$ 15,013.04 \text { rd yo bk you need } \\
\text { at least this } \\
\text { much }
\end{gathered}
$$

c) At what interest rate must a sum of $\$ 5000$ be deposited in order for it to become $\$ 7500$ in 5 years if interest is compounded quarterly?

\[

\]

d) How long will it take a savings account of $\$ 2000$ to have a value of $\$ 15,000$ if the interest rate is $7.5 \%$ and is compounded continuously? $\quad t=\mathrm{Pe}^{r t}$

$$
\begin{array}{ll}
15000=2000 e^{.075 t} & \ln \frac{15}{2}=.075 t \\
\frac{15}{2}=e^{.075 t} & \frac{\ln 15 / 2}{.075}=t
\end{array} \begin{array}{r}
t \approx 27 \mathrm{yrs} \\
26.865 \ldots
\end{array}
$$

e) The population of a single-celled organism decreased from 480 to 58 in 12 minutes. What is the half-life of this

$$
\text { organism? Find } k \text { first: } \begin{aligned}
58 & =480 e^{k \cdot 12} \\
\frac{58}{480} & =e^{12 k} \\
\ln \frac{58}{480} & =12 k
\end{aligned}
$$

$$
k=\frac{\ln 58 / 480}{12} \longleftarrow 5 T 0!
$$

$$
\frac{1}{2}=e^{k t}
$$

$$
\ln \frac{1}{2}=k t
$$

$$
\frac{\ln \frac{1}{2}}{k}=t \quad t \approx 3.9358 \text { minutes }
$$

f) If the half-life of a certain element is 2000 years. How long will it take the element to decrease to $75 \%$ of its original

$$
\begin{aligned}
& \text { amount? Find } k!\quad k=\frac{\ln \frac{1}{2}}{2000} \\
& \frac{1}{2}=e^{2000 k} \\
& \ln \frac{1}{2}=2000 k
\end{aligned}
$$

$$
\frac{3}{4}=e^{k t} \begin{aligned}
& \text { solve for } t
\end{aligned}
$$



## \#6) I CAN FIND THE NOMINAL OR EFFECTIVE INTEREST RATE.

(It would be easy to compare interest rates if all rates stated were nominal interest rates (also called simple interest rates) with the same compounding periods, but this is rarely the case. Because of this, we can calculate APY (the effective rate) as a method of comparing interest rates with different compounding periods.)

Calculate the following APYs (also called the effective rate).
a) Nominal interest rate of $7 \%$ compounded monthly

$$
\begin{aligned}
& \left(1+\frac{.07}{12}\right)^{12} \\
& =\underbrace{1.07229}_{\text {effective rate: }} 7.229 \%
\end{aligned}
$$

b) Simple interest rate of $6.5 \%$ compounded daily

$$
\begin{aligned}
& \text { T same as the nominal rate! }^{\left(1+\frac{.065}{365}\right)^{365}} \\
& \approx 1.06715 \\
& \underbrace{16.715 \%}_{\text {effective rate: }}
\end{aligned}
$$

c) Nominal interest rate of $3.25 \%$ compounded annually

$$
\left(1+\frac{.0325}{1}\right)^{1}
$$

Effective rate = nominal interest rate b/c it is companded

$$
\underbrace{\text { annually. }}
$$

- MAKE SURE THESE QUESTIONS SEEM EASY PEASY LEMON SQUEEZY!
- REVIEW QUIZ 5.1-5.3 AND THE REVIEW WORKSHEET FOR THE QUIZ.
- REVIEW YOUR HOMEWORK AND YOUR NOTES
- REVIEW UNTIL YOUR BRAIN HURTS!

