OBJECTIVES:

1) Identify the possible rational zeros of a polynomial function.
2) Find all the roots of a polynomial function using your calculator!

We will still be finding the factors of our polynomial, but now, we'll have a little help from the calculator.

1) Factor: $f(x)=2 x^{3}-x^{2}-x-3$
a) List all of the possible rational zeros.
b) Factor the polynomial.
a) $\pm \frac{p}{q}=\frac{ \pm 1,3}{ \pm 1,2}= \pm 1, \frac{1}{2}, 3, \frac{3}{2}$

RATIONAL ROOT THEOREM:

$(a x-b)$ is a factor of $f(x)$
if and only if $f\left(\frac{b}{a}\right)=0$.
b) In calk: $f(1.5)=0 \quad(1.5,0)$

$$
f(3 / 2)=0
$$

$$
\left(x-\frac{3}{2}\right) \text { is a factor } \Rightarrow(2 x-3) \text { is a factor }
$$

$$
\frac{3}{2} \left\lvert\, \begin{array}{rrrr}
1 & -\frac{1}{2} & -\frac{1}{2} & -3 / 2 \\
& 3 / 2 & 3 / 2 & 3 / 2 \\
1 & 1 & 1 & 00
\end{array}\right.
$$

$$
\int(2 x-3)\left(x^{2}+x+1\right)
$$

$$
x^{2}+x+1 \text { is prime }
$$

2) Factor: $f(x)=10 x^{4}-3 x^{3}-29 x^{2}+5 x+12$
a) List all of the possible rational zeros.
b) Factor the polynomial.
a) $\pm \frac{p}{q}=\frac{ \pm 1,2,3,4,6,12}{ \pm 1,2,5,10}= \pm 1, \frac{1}{2}, \frac{1}{5}, \frac{1}{10}, 2,2 / 5,3,3 / 2,3 / 5,3 / 10,4, \frac{4}{5}, 6,6 / 5,12,12 / 5$
b) $f(.8)=0 \Rightarrow f(4 / 5)=0$ so $(x-4 / 5)$ is a factor $(5 x-4)$

$$
\begin{aligned}
& \frac{4}{5} \left\lvert\, \begin{array}{ccccc}
2 & -3 / 5 & -29 / 5 & 1 & 12 / 5 \\
& 8 / 5 & 4 / 5 & -4 & -12 / 5 \\
\hline 2 & 1 & -5 & -3 & 10
\end{array}\right. \\
& 2 x^{3}+x^{2}-5 x-3 \\
& f(-1.5)=0 \quad f(-3 / 2)=0 \quad(x+3 / 2) \Rightarrow(2 x+3) \text { is a factor } \\
& x^{2}-x-1 \\
& \uparrow_{\text {prime }} \\
& (2 x+3)(5 x-4)\left(x^{2}-x-1\right)
\end{aligned}
$$

3) Factor: $f(x)=12 x^{3}+16 x^{2}-5 x-3$
a) List all of the possible rational zeros.
b) Factor the polynomial.

$$
\text { a) } \begin{aligned}
\pm \frac{p}{a}= & \pm \frac{1,3}{ \pm 1,2,3,4,6,12}
\end{aligned}= \pm 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}, \frac{1}{12}, 3, \frac{3}{2}, \frac{3}{4}
$$

b) $f(-.33)=0 \quad f\left(-\frac{1}{3}\right)=0 \quad\left(x+\frac{1}{3}\right)$ is a factor, so $(3 x+1)$ is a factor.

$$
\left.\begin{array}{l}
-\frac{1}{3} \left\lvert\, \begin{array}{cccc}
4 & 16 & -5 / 3 & -1 \\
& -4 / 3 & -4 / 3 & 1
\end{array}\right. \\
4
\end{array} 4 \begin{array}{ll}
4 & 10
\end{array}\right] \begin{aligned}
& 4 x^{2}+4 x-3 \\
& (2 x+3)(2 x-1)
\end{aligned}
$$

Factors:

$$
(3 x+1)(2 x+3)(2 x-1)
$$

