OBJECTIVES:

1) Multiply rational expressions

WARM-
Evaluate without the use of a calculator: $\frac{3}{4} \cdot \frac{8}{5} \cdot \frac{6}{3} \cdot \frac{2}{4} \cdot \frac{3}{10} \cdot \frac{11}{12}$

CAUTION!
COMMON MISTAKES!

$$
\frac{4}{x+4} \neq \frac{1}{x}
$$

$$
\frac{x^{2}+4}{x} \neq x+4
$$

Multiplying rational expressions is the same as multiplying numerical fractions. We don't need the same base and we can simplify the expression to make it easier to compute.

1) $\frac{x^{2}+5 x+6}{x^{2}-x-20} \cdot \frac{x^{2}+3 x-4}{x^{2}+x-2}$
2) $\frac{x^{2}+7 x+12}{12} \cdot \frac{4}{x+4}$

$$
\begin{aligned}
& \frac{(x+3)(x+2)}{(x-5)(x+4)} \cdot \frac{(x+4)(x-1)}{(x+2)(x-1)} \\
& \frac{x+3}{x-5}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(x+4)(x+3)}{3} \cdot \frac{4}{(x+4)} \\
& \frac{x+3}{3}
\end{aligned}
$$

3) $\frac{x^{2}-4}{2 x-4} \cdot \frac{2}{x+2}$

$$
\frac{(x+2)(x+2)}{f(x-2)} \cdot \frac{2}{(x+2)}=1
$$

4) Simplify: $\frac{x-6}{6-x}$

$$
\begin{aligned}
\frac{x-6}{-(-6+x)} & =\frac{x-6}{-(x+6)} \\
& =-1
\end{aligned}
$$

