6.11 NOTES - CHANGE OF BASE
 AND LOG EQUATIONS

OBJECTIVES:

1) Use common logs to solve equations.
2) Apply the change of base formula.

SOLVE LOGARITHM EQUATIONS BY APPLYING LOG PROPERTIES:

1) $2 \log _{3} x=\log _{3} 9$
2) $\log _{7} x=\frac{2}{3} \log _{7} 8$
3) $2 \log _{6} x+\log _{6} 4=\log _{6} 64$

$$
\left.\begin{array}{ccc}
2 \log _{3} x=2 & \text { or } & \log _{3} x^{2}=\log _{3} 9
\end{array}\right) \log _{7} x=\log _{7}\left(2^{3}\right)^{2 / 3}
$$

$\log _{6}\left(x^{2} \cdot 4\right)=\log _{6} 64$
$4 x^{2}=64$
$x^{2}=16$ $x=4 x=-4$
4) $\log _{8} 48-\log _{8} y=\log _{8} 4$

$$
\log _{8} \frac{48}{y}=\log _{8} 4
$$

$$
\frac{48}{y}=4
$$

$$
y=12
$$

5) $\log _{3} x=5 \log _{3} 2-\log _{3} 8$
$\log _{3} x=\log _{3} \frac{2^{5}}{8}$
$x=\frac{32}{8}$
$x=4$
6) $\log _{2}(3 u+14)-\log _{2} 5=\log _{2} 2 u$

$$
\log _{2}\left(\frac{3 u+14}{5}\right)=\log _{2} 2 v
$$

$$
\frac{3 v+14}{5}=2 u
$$

$$
3 u+14=10 u
$$

$$
\begin{aligned}
& 14=7 u \\
& u=2
\end{aligned}
$$

7) $\ln (x+3)+\ln x=\ln 4$
$\ln ((x+3) \cdot x)=\ln 4$

$$
\begin{aligned}
& x^{2}+3 x=4 \\
& x^{2}+3 x-4=0 \\
& (x+4)(x-1)=0 \\
& x=-4 \quad x=1
\end{aligned}
$$

8) $\ln 4+\ln x=\ln e^{2}$

$$
\begin{aligned}
\ln 4 x & =\ln e^{2} \\
4 x & =e^{2} \\
x & =\frac{e^{2}}{4}
\end{aligned}
$$

9) $3 \log _{5}\left(x^{2}+9\right)-6=\log _{5} 1$

$$
\begin{gathered}
3 \log _{5}\left(x^{2}+9\right)-6=0 \\
3 \log _{5}\left(x^{2}+9\right)=6 \\
\log _{5}\left(x^{2}+9\right)=2 \\
5^{2}=x^{2}+9 \\
16=x^{2} \\
x= \pm 4
\end{gathered}
$$

CHANGE OF BASE FORMULA:

Why would we ever want to change the base of our logarithm? Well, the reason is that we cannot evaluate a logarithm like \qquad in our heads.

CHANGE OF BASE FORMULA:

$$
\left.\log _{a} c=\frac{\log c}{\log a} \quad \text { (Base } 10 \text { can be put in }\right)
$$

Examples:

1) $\log _{4} 25=$
2) $\log _{3} 18=$
3) $\log _{6} \sqrt{5}=$

≈ 2.631

$$
\frac{\log \sqrt{5}}{\log 6}
$$

$$
\approx .449
$$

USE LOGS TO SOLVE EXPONENTIAL EQUATIONS:

State your answer as an exact answer and then approximate your answer to the nearest thousandths.

1) $3^{x}=27$
$3^{x}=3^{3}$
2) $5^{x}=120$
3) $e^{x}=52$
4) $4^{2 x}=27$

$\log _{4} 27=2 x$

≈ 3.951
$\frac{\log _{4} 27}{2}=x$
≈ 2.975

$$
\approx 1.189
$$

5) $2^{x-4}=82$
6) $e^{2 x-3}=42$
7) $5^{x-3}=72$
8) $4+e^{\frac{x}{3}}=10$
$\log _{2} 82=x-4$
$\ln 42=2 x-3$
$\log _{5} 72=x-3$
$e^{x / 3}=6$
$\log _{2} 82+4=x$

$\log _{5} 72+3=x$
$\ln 6=\frac{x}{3}$
$\simeq 5.657$
$3 \ln 6=x$
≈ 10.358

